London Airspace Consultation
Part E
Proposed Changes to London City and Biggin Hill Routes between 4,000ft and 7,000ft over parts of Essex and Kent

Contents
1 Introduction .. 2
2 Today’s Airspace Usage .. 6
 Runway directions .. 11
 Today’s London City arrivals .. 11
 Today’s London City departures .. 12
 Today’s London Biggin Hill arrivals .. 14
 Traffic to/from other airports ... 14
3 Objectives and Justification for Proposed Changes at 4,000ft to 7,000ft 14
 Point Merge for London City and London Biggin Hill Airports 15
 Point Merge enhances safety ... 16
 Point Merge reduces delays ... 16
 Point Merge reduces the area regularly overflown at lower altitudes 16
 Point Merge reduces stepped descent .. 17
 Point Merge reduces stepped climb .. 18
 Point Merge enables a reduction in average fuel and CO₂ per flight 18
 Point Merge would change the location of flight paths 22
 Limitations on Route Flexibility ... 23
4 Local Considerations for Route Positioning ... 23
 How to use the maps and data to assess potential effects 24
 Altitude Data ... 25
 Tranquillity .. 25
 Assumptions ... 26
 General characteristics of proposed changes ... 26
 London City and London Biggin Hill arrival routes .. 27
 London City departure routes ... 27
 Phase 2 changes .. 28
1 Introduction

1.1 This part of the consultation document relates to proposed changes to London City arrival and departure routes through the intermediate airspace (4,000ft to 7,000ft) to the east of the airport. It also addresses some changes to arrival routes for London Biggin Hill airport that use the same airspace. NB This consultation does not include any changes to London City or London Biggin Hill routes below 4,000ft.

1.2 These changes have potential effects across the geographic area outlined in black in Figure E1. Figure E1 also shows the neighbouring areas being considered in this consultation. If an area of interest is on, or near, a boundary between two parts, then consideration should be given to the consultation material covering both areas. You may also wish to use our postcode search facility at www.londonairspaceconsultation.co.uk which will automatically highlight the parts of the consultation document most relevant to that postcode.

1.3 The design and performance of the intermediate airspace being considered in the LAMP consultation is primarily of importance to the efficiency of the overall air traffic network, rather than the local operation of London City or London Biggin Hill airports. This part of the consultation is therefore sponsored solely by NATS.

1.4 Any changes to routes under 4,000ft are the responsibility of the relevant airport. London City Airport is in the process of determining how to best modernise its existing routes below 4,000ft in line with FAS and the forthcoming European requirement for PBN routes (see Part A for details); their intention is to match the position of today’s flight paths as closely as possible.

1.5 The changes to routes above 4,000ft proposed here will be more effective if they feed into/from a PBN route structure below 4,000ft, however, they would still be of some benefit, and could be implemented, without any low level changes.

1.6 NATS and London City Airport are working together to ensure that the changes above 4,000ft and the route modernisation below 4,000ft are coordinated, however, for the time being London City Airport are progressing this work independently, and hence they are not co-sponsors of this exercise; the intention is to draw the two strands of work together in a joint submission to the CAA in the latter part of 2014.

1.7 Low altitude changes at London Biggin Hill Airport would also complement the airspace proposed here. While optimising the PBN system will require PBN routes at low altitudes for London Biggin Hill, their relatively small traffic numbers means their impact on overall efficiency is significantly less than

1 All altitudes stated in the consultation document are above mean sea level
London City. London Biggin Hill does not, at this stage, intend to modernise their low altitude routes.

1.8 NB London Southend airport is independently developing a separate airspace change proposal focused on low altitude airspace in the vicinity of the airport; consultation on their plans is on-going. Their consultation affects some of the same geographic areas covered in the London Airspace Consultation. We would encourage you to go to www.southendairport.com for details of proposals being generated by London Southend Airport, in addition to considering/responding to this consultation.

1.9 Other air traffic flows, such as Heathrow departures, may also use some of the airspace at higher altitudes over the black outlined area in Figure E1. This proposal is not considering changes to any flows in this area other than London City arrivals and departures, and London Biggin Hill arrivals. Should any changes be sought for the other flows they would be subject to separate design and consultation at a later date.
Figure E1: Consultation areas for Part E
1.10 Part A of the consultation document should be read first, as it sets the context for the proposed changes and for the consultation, including a description of the design objectives for airspace change at various altitudes and what will happen after this consultation.

1.11 Considerable care has been taken to make this consultation accessible to anyone who may wish to respond. The design and operation of airspace is, by its nature, a complex and technical issue. In order to help readers fully understand the rationale behind the changes being proposed we have, where we feel it appropriate and necessary, gone into some technical details and used relevant terminology. Any technical terms used are summarised in a glossary at Appendix B.

1.12 We aim to provide an understanding of the potential effects of the proposed changes and to provide an opportunity to feed relevant information into the on-going design process.

1.13 In Part E, in relation to proposed changes in the black outlined area in Figure E1 (above), we address:

- *Today’s airspace usage;* this section provides a description of today’s flight paths including maps of where they are generally seen
- *The objectives and justification for the proposed changes;* this section describes the kind of route system we are seeking to implement and the potential benefits and impacts. At this stage, we cannot say exactly where the local benefits and impacts will be, so with respect to our objectives we ask you to consider and feedback on the generic effects of the proposed changes rather than impacts on specific places
- *Local considerations for route positioning;* this section describes potential local effects. It asks for your feedback on any location that requires special consideration in the on-going design process, and why we should consider it special. This will help us assess the effects of various design options and identify an optimal solution

1.14 Part G of the consultation document provides additional detail on some of the subjects covered in Part E which may be of interest, but is not required to answer the questions. References to Part G are provided (generally via footnotes) where it provides additional information.

1.15 Questions are highlighted within this document in yellow. You can answer these using the online questionnaire at www.londonairspaceconsultation.co.uk or via the postal address provided in Part A.
2 Today’s Airspace Usage

2.1 Today’s flight paths for London City and London Biggin Hill arrivals, and London City departures, are illustrated in Figure E2. This shows the average number of flight paths that overfly the area of interest. Figure E3 shows the same information with Areas of Outstanding Natural Beauty (AONBs) and National Parks highlighted.

2.2 The arrows on Figures E2 and E3 illustrate the general direction of the predominant air traffic flows; black arrows show London City Departures to the south and white arrows show London City and Biggin Hill Arrivals from all directions. The location of the arrows broadly indicates the portion of the routes where aircraft are typically between 4,000ft and 7,000ft, although aircraft can be at 7,000ft earlier or later depending on traffic conditions and aircraft performance.

2.3 These plots show all flights, not just those between 4,000ft and 7,000ft. We have not limited the altitude because aircraft above/below this altitude band may be noticed in and around the area of interest, and because we want to give you a sense of the overall traffic pattern – where flights are going to and coming from.

2.4 Figures E4 and E5 show flight paths for all the flights in the region, including those to/from Heathrow, Gatwick, Stansted and Luton airports, all of which are significantly busier than London City; again we have provided this information because this other traffic may be noticed, and so that you can understand the overall traffic pattern. You will see that no overland areas in the region are completely free of aircraft flying overhead.

2.5 We have provided additional detail in Appendices to the consultation document:

- Appendix C provides a pictorial overview of the route network and air traffic flows over London and the South East
- Appendix F provides a series of maps showing the location of London City flight paths at various altitudes
- Appendix H provides detailed tables of current and forecast route usage
- Appendix I provides details of the traffic samples used to create the maps in this section
Figure E2: London City and Biggin Hill flight paths (the traffic sample shown covers both Runway 09 and Runway 27 operations at London City Airport)
Figure E3: London City and Biggin Hill flight paths with AONB boundaries shown (the traffic sample shown covers both Runway 09 and Runway 27 operations at London City Airport)
Figure E4: Flight paths to/from all airports
Figure E5: Flight paths to/from all airports with AONB boundaries shown.
Runway directions

2.6 The wind direction on any given day (or hour) dictates which direction the runway is used for take-off and landing. This in turn has a major influence on the traffic patterns in surrounding airspace. If the wind is from the west\(^2\), aircraft take off and land in a ‘westerly’ direction. This means that departures take off heading to the west of the airport and arrivals line up towards the airport from the east. When the runway is used in this direction it is referred to as ‘Runway 27’ because the heading that the aircraft fly is 270°.

2.7 If the wind is from the east (less frequent) aircraft take off and land in the opposite direction using Runway 09. Because the prevailing wind is from the West the split in runway usage is typically around 70% Runway 27 and 30% Runway 09 (based on 2012).

2.8 The traffic samples shown in Figures E2 to E5 cover a period when both runways were in use at different times. The two black arrows on Figure E2 to the west of the M25 show the Runway 27 and Runway 09 departures below 4,000ft. Most aircraft on these routes have reached 4,000ft by the M25 crossing point, so our consultation area starts just prior to this (see Figure E1).

Today’s London City arrivals

2.9 Arrivals are directed either onto an east-west flight path straight to Runway 27 or, when Runway 09 is in operation, onto an east-west flight path that goes past the airport to the south and turns back towards Runway 09 over London. These flight paths are illustrated by the white arrowheads in Figure E2 over the M25 either side of the Dartford Crossing. Traffic joining these flight paths is generally at around 4,000ft; hence they also dictate the extent of the consultation area shown in Figure E1. This consultation is not proposing any changes to low altitude route structures below 4,000ft in the vicinity of London City Airport; any such changes will be the responsibility of the airport.

2.10 Air traffic control sort arriving aircraft into an efficient stream or ‘sequence’ of aircraft for landing during busy periods. An efficient sequence is where aircraft are safely spaced, ensuring the runway is fully utilised and that flights are not unnecessarily delayed in the air.

2.11 Ensuring that the spacing between aircraft is optimal reduces the time aircraft spend queuing to land; in turn this reduces passenger delay, CO\(_2\) emissions and the local noise/visual impact of aircraft spending more time in the air than necessary.

\(^2\) Any wind with a ‘westerly’ component, for example if it was coming from the north west or south west, is considered westerly for the purposes of specifying runway direction.
2.12 This process is usually facilitated through the use of holding stacks where aircraft can circle above one another while waiting to land\(^3\); these are generally referred to as ‘holds’. The published holds for London City arrivals from the north, west and east are currently over South East London/Swanley at 3,000ft and over Southend at 4,000ft and 5,000ft\(^4\). They were established in the 1980s when traffic levels were much lower than today, and so they were developed primarily as a contingency. Regular use of the holds was not expected and therefore they are limited in terms of the numbers of aircraft they can accommodate; in addition regular use can affect the efficiency of the system as a whole.

2.13 The existing arrangements mean that, when aircraft are queuing to land at London City, air traffic controllers can rarely rely on using the holds alone. Instead they have to issue variable, often complex, navigation instructions (known as ‘tactical vectoring’ or ‘vectoring’) to aircraft, in order to queue them at relatively low altitudes (3,000ft or 4,000ft) over parts of London.

2.14 This means that today’s arrivals for London City do not follow a single flight path and can be spread over a wide area – as shown in Figures E6 and E7 which are illustrations of actual tracks that have been flown by aircraft queuing to land at London City Airport.

2.15 These figures show that much of the vectoring for London City arrivals takes place over South East London where the aircraft are flying level at 3,000ft or 4,000ft (rather than descending, which is generally a quieter operation). The background flight paths in Figures E6 and E7 show the year 2008’s traffic patterns before the economic downturn. While current traffic levels do not require as much low altitude vectoring as then, it still occurs today on a regular basis. 2008’s flight path have been shown to illustrate how, without change, the density of low altitude traffic over East London will increase as traffic levels recover and surpass previous peaks.

Today’s London City departures

2.16 London City departures that eventually head out towards the south coast over Kent initially have to turn north after take-off. They then turn east and eventually south to cross the Thames Estuary in the vicinity of Canvey Island.

\(^3\) A short video including an explanation of holding is available on the consultation website at www.londonairspaceconsultation.co.uk

\(^4\) There is also a contingency hold over the North Sea; however this is too far away from the airport to be used regularly.
Figure E6: Examples of flight path variation for arrivals from the north and west

Figure E7: Examples of flight path variation for arrivals from the east and south

The coloured arrows on both these figures illustrate the variation in flight paths for London City arrivals. The dotted lines in Figure E6 represent flight paths that are occasionally used.
2.17 These departures have to be directed through congested airspace which often leads to them being kept at low altitudes. This is because they initially have to keep below the heavy flow of Heathrow arrivals (seen on Figure E4 as the red areas over central and north London). They then get caught beneath London City arrivals coming from the direction of Southend (seen in Figure E2 but best illustrated in Figures E3 and E4). This means that the southbound departures are regularly kept as low as 4,000ft until they have crossed the Thames Estuary.

2.18 The published route for these departures is positioned over Rochester. However, in practice, few aircraft are left on the route because air traffic control will tactically vector aircraft, taking them off the route, to try to achieve better climb through the congested airspace. The departures crossing the estuary can therefore be seen across a wide area in Figure E2 to the east of Rochester.

Today’s London Biggin Hill arrivals

2.19 London Biggin Hill arrivals use the same route system as London City arrivals down to approximately 4,000ft, from where they are vectored towards the relevant runways. They are initially vectored along the same path as the London City arrivals to runway 27 but are then directed off this route towards Biggin Hill (this is shown on Figure E2 as the dotted white arrow). Descriptions of the London City arrival route system and flight paths above 4,000ft should therefore be assumed to refer to London Biggin Hill arrivals also. London City airport is, however, much busier; approximately 90% of traffic on this route will be for London City and only 10% for London Biggin Hill. Changes to London Biggin Hill departure routes are not within the scope of this consultation.

Traffic to/from other airports

2.20 Figures E4 and E5 show traffic to/from other airports may be seen overflying these areas, in particular Stansted and Heathrow departures although these aircraft are mostly at higher altitudes. We are not proposing changes to any of these other traffic flows at this time.

2.21 London Southend Airport uses the same arrival routes as London City through network airspace, but they are generally vectored off the route system towards the Southend runways once below approximately 5,000ft. Southend departures do not utilise the same departure routes as London City departures, but do operate at lower altitudes above some of the areas shown in Figure E1. Changes to London Southend arrival and departure routes below 7,000ft are not within of the scope of this consultation.

3 **Objectives and Justification for Proposed Changes at 4,000ft to 7,000ft**

3.1 This section describes our objectives for changing the routes used by London City and London Biggin Hill air traffic. It describes what we are trying to
achieve and the generic benefits/impacts that would result. We then seek your view on these objectives. Specific local considerations are discussed in Section 4, while fuel burn implications for specific routes and effects on specific aviation users are discussed in Part G.

3.2 We have been working for some time on developing the best approach for using PBN\(^5\) to improve the way in which we manage air traffic. The conclusion of this work is that a system based on ‘Point Merge’ for London City and London Biggin Hill arrivals can best realise the benefits available from PBN.

Point Merge for London City and London Biggin Hill Airports

3.3 Point Merge is a system by which the aircraft in a queue to land fly an extended flight path around an arc instead of holding in circles, or being vectored to extend their flight path at low altitudes. They fly along the arc until the next slot in the landing sequence is free, at which time air traffic control (ATC) will turn the aircraft off the arc into the landing sequence. Extending the flight path in this way means that aircraft queue one behind another at higher altitudes, rather than one above another in a hold, or in unpredictable patterns at low altitudes (as shown in Figures E6 and E7 and described in paragraph 2.14).

3.4 Most Point Merge airspace for London City/London Biggin Hill is above 7,000ft, and is therefore described in detail in Part F of the consultation document. However, it would also enable the following generic benefits to the operation of airspace between 4,000ft and 7,000ft for London City and London Biggin Hill arrivals:

- Enhanced safety
- Reduced delays
- Fewer areas overflown at lower altitudes
- Reduction in stepped descent
- Reduction in stepped climb
- Reduced average fuel and CO\(_2\) per flight

3.5 Point Merge will change the local noise and visual impacts of aviation as it will change the spread of flight paths across the sky from what is seen today; some areas may be overflown more, others less and some will not notice any significant change. Other than this potential change in local effects, which may be positive or negative, we are aware of no other detrimental environmental consequences.

3.6 The potential benefits and impacts are discussed in more detail below. Further details of operational benefits and issues are also provided in Part G.

\(^5\) See Part A for an overview of modern navigational technology (referred to as PBN) and its relevance to this proposal.
Point Merge enhances safety

3.7 Holds and the associated vectoring required to develop the landing sequence (see Section 2) are a particularly complex operation. Although it is complex, this system has been in use world-wide for many decades. It is, however, generally accepted that a reduction in complexity will enhance safety. Point Merge is a more predictable system where the aircraft flight paths are less complex; its introduction therefore offers the opportunity to further enhance the safety of the air traffic network.

Point Merge reduces delays

3.8 The number of aircraft that the air traffic controllers can manage in any given hour is limited for safety reasons – complexity is a key factor that determines what the limit is for a given sector of airspace. Once it is predicted that the limit will be reached, additional flights due to pass through the sector are delayed until such time that they can be safely accommodated.

3.9 Point Merge helps sort the air traffic into an efficient sequence at higher altitudes, reducing the complexity of the operation and therefore increasing the number of aircraft the controller can safely handle. This is referred to as an increase in the airspace capacity which also means a reduced likelihood of delay for arriving aircraft and their passengers.

3.10 Delay was becoming a significant issue until the economic downturn in 2008 depressed traffic levels. Air traffic levels are now recovering, albeit slowly, and without a change to the way in which air traffic is managed we will see an increase in delays as traffic levels grow.

3.11 Testing has shown that the improved system efficiency that Point Merge enables will be able to accommodate forecast air traffic growth\(^6\) to 2025 without significant delay. NATS operates under the terms of our Air Traffic Services Licence, which requires us to be capable of meeting, on a continuing basis, any reasonable level of overall demand for air traffic control services. Airspace change is required to accommodate growing demand; growth in the overall number of flights is therefore assumed with or without this proposed airspace change.

Point Merge reduces the area regularly overflown at lower altitudes

3.12 Today’s holding and vectoring results in variable flight paths at intermediate and low altitudes. This means that aircraft flight paths at these altitudes are spread over a wide area as described in Section 2.

\(^6\) The forecast growth used to underpin the analysis presented in this document can be found at Appendix F.
3.13 Point Merge not only provides a queuing area, it also helps ATC sort the aircraft into an efficient sequence at higher altitudes than today (above 6,000ft compared to the vectoring which occurs today at 3,000ft to 4,000ft). In turn this means that the flight paths to the runway can be flown more consistently, with distinct environmental benefits:

- The spread of traffic is much less, so the extent of the area where aircraft are regularly flying directly overhead is smaller - this is in line with Government guidance (see Appendix A)
- The routes can be positioned to reduce overflight of populations and/or environmentally sensitive areas below 7,000ft, for example over the sea

3.14 The application of Point Merge therefore offers the opportunity to reposition the vast majority of low altitude air traffic that currently approaches London City from the directions shown in Figure E6 and E7 into a single flow, approaching from the east over the Thames Estuary.

Point Merge reduces stepped descent

3.15 Point Merge provides more predictability for flight crew compared to today’s approach environment in which pilots follow specific instructions from ATC rather than follow a fixed route.

3.16 More predictability means the flight crew can plan a more gradual descent rather than a ‘stepped descent’ where aircraft descend in stages, often with long periods of level flight at low altitudes. Minimising stepped descent can reduce noise impact and improve fuel efficiency; saving fuel means less CO₂. It can offer such an efficiency improvement that it can often present an overall benefit even if aircraft flight paths are extended in order to achieve it⁷,⁸.

3.17 In today’s airspace, air traffic control organises the spacing in the London City landing sequence at low altitudes (see paragraphs 2.10 - 2.15). This means that aircraft are often required to descend early, then fly level at low (inefficient) altitudes for a relatively long period.

3.18 Setting the landing sequence order in the Point Merge system helps pilots plan their descent to stay high for as long as possible before commencing a more gradual descent. This means that, compared with today, aircraft should generally be higher and quieter⁹.

3.19 London City Airport airspace changes alone would not enable a full continuous descent down to the runway as London City traffic flows interact with air traffic

⁷ A short video explaining the benefits of airspace change – including those from continuous climbs and descents - can be found at www.londonairspaceconsultation.co.uk.

⁸ Overall CO₂ efficiency is discussed in paragraphs 3.24 - 3.25. Further details and a route by route analysis are provided in Part G.

⁹ A large proportion of the Point Merge route system for London City will be out over Thames Estuary, but its southern boundary and the routes from 7,000ft that will descend traffic from the Point Merge structure are likely to be overland or close to the shore and so continuous descents would provide some noise benefit.
to/from neighbouring airports which are not being consulted on here. The introduction of Point Merge would, however, decrease the occurrence of stepped descents, and reduce the amount of level flight required at low altitudes.

Point Merge reduces stepped climb

3.20 Aircraft operate more efficiently at higher altitudes meaning less fuel is burned, therefore emitting less CO₂ into the atmosphere. Aircraft at higher altitudes are also less likely to cause local impact from noise or visual intrusion. It is therefore in everyone’s interest that departing aircraft can climb efficiently to higher altitudes, minimising ‘steps’ where they have to stop climbing and fly level for a period, often at lower altitudes." 10.

3.21 London City departures have an initial step in their climb at 3,000ft to keep them below Heathrow arrivals descending in the airspace above. The current routes that take London City southbound departures out over the south coast of Kent then have to cross the London City arrivals from the north east (see Figure E2). The proximity of the arrival stream often leads to the departures being held down at 4,000ft, beneath the arrivals, until they have crossed the Thames Estuary.

3.22 The introduction of Point Merge would realign arrival routes from the east from their current location over Southend to one somewhere along the Thames Estuary. Furthermore PBN offers the opportunity to realign the southbound departure routes (see previous paragraph) to take them further east before heading south. The combination of realignment of both arrivals and departures offers the opportunity to provide a system that ensures London City departures would climb above the arrivals in normal circumstances; these departures would climb to at least 7,000ft by the time they cross the Thames Estuary.

3.23 By facilitating climb in this way, Point Merge would enable aircraft to more quickly achieve 7,000ft where noise is considered less of a nuisance (see Government guidance at Appendix A), while climbing more quickly to efficient cruising altitudes also provides a contribution to the fuel and CO₂ savings discussed below. Continuous climb offers such an efficiency improvement that it can often present an overall benefit even if aircraft flight paths are extended in order to achieve it." 11.

Point Merge enables a reduction in average fuel and CO₂ per flight

3.24 We have undertaken computer based simulation modelling to assess the potential fuel benefits that the implementation of Point Merge would enable across the network, including changes to the arrival routes feeding into the

10 See footnote 7 on page E17
11 See footnote 8 on page E17
Point Merge system and changes to neighbouring departure routes. This has estimated that the fleet operating today at London City Airport would plan to carry between 2,500 and 5,000 tonnes (t) per year less fuel in 201612. Given forecast traffic increases this estimated saving is expected to rise to between 3,000t and 5,900t in 2025. The range is wide because we have not yet established the final position of the routes which will be established with the benefit of the feedback from this consultation. See Appendix H for details of forecast traffic.

3.25 Fuel efficiency for London Biggin Hill arrivals is also expected to be improved commensurately with London City arrivals; however, given the limited number of London Biggin Hill arrivals there were insufficient flights in our analysis data sample to produce reliable results.

3.26 However, we can make broad assumptions to estimate the order of magnitude for this benefit: London Biggin Hill has approximately 10% of the number of flights that London City has, but these are generally smaller, more fuel efficient aircraft types. On the basis of these assumptions we broadly estimate that the commensurate benefit for London Biggin Hill arrivals would be in the region of 5% of those quoted above for London City arrivals.

3.27 The savings in planned fuel give an indication of the potential CO\textsubscript{2} savings as the amount of CO\textsubscript{2} emitted is directly proportional to the amount of fuel burned; 1 tonne less fuel burned means 3.18 tonnes less CO\textsubscript{2} released into the atmosphere13 and so the above fuel figures indicate potential CO\textsubscript{2} savings of up to 19,000t per annum14. However, it may be that some of this CO\textsubscript{2} saving is already being realised, as air traffic control often navigate aircraft off their planned route – for instance, to provide shortcuts15,16. Therefore the future savings in planned fuel (described in paragraph 3.24) may not translate fully into savings of CO\textsubscript{2}.

3.28 Once we have undertaken detailed design work considering all the consultation feedback, we will undertake further analysis to determine the expected effect

12 This is the total reduction in planned fuel across the fleet for all journeys – arrivals and departures in 2016. For more detail on fuel planning including how the proposal affects individual route efficiency see Part G.

13 The mass of CO\textsubscript{2} emitted is greater than the mass of fuel burnt because the oxygen component of CO\textsubscript{2} is drawn from the atmosphere rather than the fossil fuel itself (which provides the carbon component).

14 These figures represent the saving as a result of the proposed change compared with the do nothing scenario, assuming the same number of flights for both scenarios. They do not represent a reduction in the overall amount of CO\textsubscript{2} – the main factor in overall CO\textsubscript{2} is the growth in the number of flights; this is beyond the scope of this consultation (see Part A Section 3).

15 Aircraft plan their route along a defined route structure. This route structure is generally designed such that neighbouring routes do not cross one another at the same level. This can mean that, in places, published routes are lengthened to avoid one another. If there is no traffic on nearby routes then there may be no reason to follow the lengthened route. In these circumstances ATC can consider giving the aircraft an instruction to go direct to a point further along their route, thereby providing a shortcut.

16 As airspace gets busier ATC tend to rely more on the route structure as there is less space and time to provide alternative instructions. Therefore we expect this ATC intervention to gradually become less common in the future as traffic grows. However, some intervention will always occur; for example shortcuts are always an option during periods of light traffic such as at night. This would be the case for both the current airspace structure and with a new Point Merge structure.
of Point Merge on average CO₂ per flight17. While we are not able to quantify the benefit at this stage, we will ensure that the reduction in planned fuel means that average CO₂ emitted per flight would reduce.

3.29 We will be faced with choices in terms of positioning the routes; these choices depend on operational factors, in particular safety and efficiency, and on environmental factors such as minimising overflight of certain areas whilst also minimising fuel burned and associated CO₂ emissions.

3.30 We have to consider whether flying a longer route to avoid a particular area outweighs the cost in terms of fuel and CO₂. On average, adding one nautical mile18 to a typical London City Airport flight such as a two engine small jet (eg Embraer E170) at 6,000ft will result in an extra 7.3kg fuel burn per flight. If this was applied to all London City Airport flights, it would relate to approximately 700t more fuel (2,100t of CO₂) per year in 2016 rising to over 800t fuel (2,500t CO₂) in 2025. In addition to the environmental costs, financially this would cost the airlines (and ultimately their passengers) approximately £430,000 per annum in 2016 rising to £510,000 per annum by 202519.

17 Estimating the likelihood and effect of air traffic control intervention requires assessment of the detailed design; therefore this estimation cannot occur until after consultation and subsequent design work has been undertaken.

18 Aviation measures distances in nautical miles. One nautical mile (nm) is 1,852 metres. One road mile (‘statute mile’) is 1,609 metres, making a nautical mile about 15\% longer than a statute mile.

19 Using a typical aviation fuel cost of £650 per tonne. NB the figures shown are rounded.
Altering routes to fly around environmentally sensitive areas rather than overhead is likely to mean more fuel burn and more CO₂ emissions because the altered route would usually be longer. In general, which should take precedence - minimising overflight of sensitive areas by flying a longer route around them, or flying the direct route overhead the area to keep the route shorter and minimise fuel burn and CO₂?

- Flying longer routes around environmentally sensitive areas should always have greater precedence than flying overhead on shorter routes which minimise fuel burn/CO₂
- Flying longer routes around environmentally sensitive areas should generally have greater precedence than flying overhead on shorter routes which minimise fuel burn/CO₂
- Flying longer routes around environmentally sensitive areas should be given equal weighting to flying overhead on shorter routes which minimise fuel burn/CO₂
- Flying shorter routes which minimise fuel burn/CO₂ should generally have precedence over flying longer routes around environmentally sensitive areas
- Flying shorter routes which minimise fuel burn/CO₂ should always have precedence over flying longer routes around environmentally sensitive areas
- Don’t know

What, if any, factors should be taken into account when determining the appropriate balance of flying around environmentally sensitive areas versus overhead (for instance the altitude of the aircraft may be a factor, or the frequency/timing of flight)?

Please go to the online questionnaire at www.londonairspaceconsultation.co.uk to give your answers to these questions
Point Merge would change the location of flight paths

3.31 Part A of the consultation document describes how the introduction of PBN will inevitably result in some changes to where aircraft flight paths are seen in the future, regardless of whether the system is based on Point Merge or otherwise. The application of Point Merge would, however, influence the general characteristics of the new traffic patterns for both arrivals and departures.

3.32 Figure E2 shows how flight paths today can be seen over the whole area of interest; this will continue to be the case, although the areas in which they are concentrated is likely to change. Overall we expect Point Merge to mean a reduction in local impact because of the generic benefits from reduced flight path dispersal, and more continuous climb/descent as described above. However, whilst many areas would experience less impact (fewer flights overhead, or flights overhead at higher altitudes), some others would experience more as traffic patterns shift (ie the brightly coloured areas in Figure E2 would shift and become more concentrated around the new PBN routes20).

3.33 Questions on what should influence the positioning of the Point Merge routes are the subject of Section 4. However, in addition to feedback on local matters, this consultation is seeking feedback on whether the objective of changing today’s route system to one based on Point Merge is justified, given the generic benefits and impacts described in this document. Answering this question does not prevent you from providing information on local sensitivities in answer to the questions presented later in Section 4; for example you may support the objective of Point Merge but have strong views on areas that should be avoided. Equally you may have information that we have not considered that leads you to oppose Point Merge in principle, regardless of local issues. Please use the question below to express your view on the general principle and the question in Section 4 to provide specific local information.

3.34 This part of the consultation document is aimed at environmental stakeholders beneath the intermediate airspace between 4,000ft and 7,000ft. There are additional benefits and impacts relating to Point Merge that specifically affect network airspace above 7,000ft, and which specifically affect the aviation community; more detail on these can be found in Parts F and G of the consultation document respectively.

If this proposal is accepted, we expect that change to observed flight paths would be spread over a period of time. This will be partly due to the phasing outlined in Part A, but also because the airspace structure is part of a wider system including the aircraft, engineering systems and the air traffic controllers themselves. Although changes to the route structure happen instantaneously, the operation of airspace would evolve over time as the different systems and working practices possible in a PBN environment are adopted. The likelihood of gradual change is discussed in more detail in Part G. This means that new routes would have an immediate effect in places and a more gradual one in others.
This proposal is seeking to change the way aircraft use airspace by developing a system for managing arrivals based on Point Merge, rather than the holding stacks/vectoring currently in use.

Please indicate the extent to which you support or oppose our objective of providing a future arrival system based around Point Merge.

Please provide any additional information you think is relevant to our objective to redesign arrival routes around a Point Merge system.

NB separate questions are provided in Parts B, C, D and F to identify specific local considerations relating to the positioning of the routes associated with Point Merge.

Please go to the online questionnaire at www.londonairspaceconsultation.co.uk to give your answers to these questions

Limitations on Route Flexibility

3.35 There are limitations to what can be achieved in terms of general route positioning to reduce overflight of particular areas. These relate to:

- **Manoeuvrability** - aircraft fly at high speeds; this limits how tightly, and how often, aircraft can turn in order for the route to be considered flyable and safe (this is governed by international design standards)

- **Balancing conflicting requirements** - for example, flying a longer flight path in order to reduce the number of people affected by noise from low altitude traffic, versus the environmental impact of additional CO₂ emissions and financial fuel cost of doing so (see paragraphs 3.29 and 3.30)

- **Local environmental trade-offs** – avoiding overflight of one area would mean overflight of neighbouring ones. In particular avoiding overflight of a town will necessitate flying over neighbouring countryside which may be valued for its relative tranquillity. Part A describes the generic framework for determining how to position routes given the priorities for routes at certain altitudes. The question presented in Section 4 seeks information on local issues that we should consider when applying the priorities and determining the position of routes

4 Local Considerations for Route Positioning

4.1 The application of PBN and Point Merge for London City Airport would result in changing traffic patterns; some areas would experience more flights overhead, some fewer, and some would experience little change. We are consulting early in the design process and have not yet fixed the position of the routes, so that your feedback on local issues can be considered in determining the position of these routes.
4.2 All the maps presented in this section are available to view on the website at
www.londonairspaceconsultation.co.uk; these online maps can be interrogated
using the postcode search function. You can also zoom in on maps and switch
easily between the current day traffic picture and the consultation swathes for
the new routes.

How to use the maps and data to assess potential effects

4.3 We provide information to help answer the questions “Would the change mean
more overflights? And if so how many aircraft and what is the potential
effect?”. This information is in the form of maps and data that indicate
potential noise and visual impacts across a consultation swathe covering all
the options for the positioning of the new PBN routes described in this
document (it does not cover existing routes/flight paths that are not subject to
change). The consultation swathes themselves are shown in the maps found
in Figures E8 and E9, with data provided on the preceding page; additional
traffic data is also provided in Appendix H. Figures E8 and E9 may be directly
compared to the map in Figure E2 which shows today’s air traffic flows.

4.4 The noise and visual impact experienced at a given location will depend on
where the route is positioned within the consultation swathe; high
concentrations of traffic would be directly overhead only a small proportion of
the overall area. We are asking you to consider that the routes in question
could be positioned anywhere within the consultation swathe, and to be
mindful therefore that anywhere within the consultation swathe has the
potential for noise and visual impact.

4.5 Information on the scale of potential impact is presented; this information
describes:

- The potential number of aircraft that would fly on the route and which
 may be overhead subject to the final route position within the
 consultation swathe; a summary is provided on the data page preceding
 each map and Appendix H provides further detail
- The altitude these aircraft would be\(^{21}\); this is shown by the shading on
 the maps themselves; this information is discussed in more detail in the
 paragraphs below
- A measurement of how loud aircraft at that height would sound at
 ground level (a metric referred to as \(L_{\text{max}}\)) – this would also be
 dependent on the aircraft types expected; a summary is provided on the
 data page preceding each map with links to further detail

\(^{21}\) The maps show altitude which is height above mean sea level. Stakeholders should take account of the
elevation of any area of interest when considering the maps and this data table. For example, if an area of interest
is marked in the map beneath changes with minimum altitude of 5,000ft, but the ground level is 500ft, the actual
minimum height the aircraft above would be is 4,500ft.
Altitude Data

4.6 The altitude information presented on the maps shows a worst case altitude and an indication of typical altitude for aircraft during normal operations22. The worst case represents the lowest altitude we would normally expect an aircraft to be on the flight path in question. For example, the start of the ‘minimum 4,000ft’ altitude band on the map for the departure route is the area by which we would normally expect all aircraft to have reached 4,000ft. This would include the worst case of a slow climbing aircraft whose climb had been restricted by the presence of other aircraft above (such as the Heathrow arrivals described in Paragraph 2.17); a less restricted flight would climb earlier.

4.7 The typical altitude is shown to indicate that most aircraft will be significantly above the worst case; however, determining typical altitudes for aircraft across a wide swathe for a future airspace design is not an exact science. We have therefore erred on the side of caution with these typical values and so even they do not represent the true range of altitudes that aircraft may achieve. Additional maps showing the range of typical altitudes achieved today is provided in Appendix F; in general we expect the proposed changes to mean that, for a given location, aircraft will be at the same or higher altitudes than shown today in Appendix F.

4.8 Whilst this variation in altitudes would happen in reality, it is difficult to represent in a consultation document; we therefore suggest that as a default, stakeholders should consider the potential impact of aircraft at the minimum altitude shown on Figures E8 and E9.

Tranquillity

4.9 Another factor that may determine the significance of a potential impact is tranquillity. CAA guidance for airspace change does not provide a method for assessing tranquillity. Any assessment will therefore be subjective and dependent on the specific location in question. The Government guidance (see Appendix A) specifically mentions AONBs and National Parks and so we have highlighted them on the maps in Figures E3 and E5 for comparison with the consultation swathes in Figures E8 and E9; you may wish to consider the potential effect on tranquillity when providing feedback.

22 Excluding any variation for safety reasons, or unusual circumstances such as extreme weather.
Assumptions

4.10 In order to ensure you do not underestimate the potential impact on a particular location we ask you to assume that all aircraft are kept on the route in question rather than being vectored off it by air traffic control; in reality vectoring would still happen some of the time. This assumption, combined with the worst case assumptions regarding altitude described above, means that the potential impact may be overestimated. In turn, the result of this may be more feedback for us. However we believe that this assumption is prudent and favourable over one which risks you underestimating the potential effects.

4.11 It is also important to emphasise that the consultation swathes presented are much wider than the routes which will be positioned within them. The maximum number of overflights shown would apply only to the areas below the eventual route position; most of the consultation swathe will therefore have fewer overflights than today.23

General characteristics of proposed changes

4.12 Part A describes how we are consulting at a relatively early stage in the design process. This means we have not yet decided on the position of the routes we are seeking to change, and so we are presenting the wide consultation swathes which encompass all the options. The following paragraphs present the consultation swathes and describe the key factors that determine where they sit. The consultation swathes are all much wider than the routes that need to be positioned within them; hence we still have flexibility to consider different options based on feedback to this consultation.

4.13 The traffic data shown on the pages preceding Figures E8 and E9 show a forecast of the average hourly number of flights across a daytime period. This period is defined around the 0630–2200 period of operation for London City and London Biggin Hill airports on weekdays. London City arrivals below 7,000ft over Essex and Kent may be 5–10 minutes from reaching the airport, and so the first arrivals of the day could feasibly be over those areas from around 0620. Likewise departures will be over Essex and Kent 5–10 minutes after taking off. The ‘daytime period’ for this data therefore starts at 0620 for arrivals, and ends at 2210 for departures. London City Airport is not open on Saturday afternoons or Sunday mornings.24 The data shown alongside Figures E8 and E9 presents headline traffic numbers which can help

23 The new routes will tend to concentrate traffic. If more air traffic is concentrated on or around the route, it means there would be fewer overflying adjacent areas.
24 For more details of flying hours at London City and London Biggin Hill airports respectively see www.lcacc.org/operations/operations.html#Hours and www.bigginhillairport.com/airport-information/opening-times/
stakeholders quickly assess the potential impact. A full traffic breakdown can be found in Appendix H.

London City and London Biggin Hill arrival routes

4.14 Figure E8 shows the consultation swathe for arrivals coming from the proposed Point Merge system over the Thames Estuary, encompassing the eastern extension of the two low-altitude arrival flight paths for Runways 09 and 27 (see paragraph 2.9). The eastern end of the swathe is defined by the potential location of the Point Merge route structure.

4.15 We do not expect the Point Merge system to be positioned in the overland area south of the estuary. However, aircraft approaching the estuary from the south may be turned in early towards the airports if there is no need to form a queue. London City and London Biggin Hill Arrivals do not regularly overfly this area today and therefore we are addressing it in this consultation; Figures E2 and E4 show that this area is overlown today, this is generally by departures at higher altitudes. Arrival shortcuts further to the south would follow a similar alignment to today’s arrivals along the Kent Downs (this flow can be seen Figure E2); as this impact exists today we are not consulting over this area.

London City departure routes

4.16 The consultation swathe for the proposed change to the London City departure route is shown in Figure E9. We aim to design a route that will enable the departures to climb above the arrivals (in the area shown in Figure E8) regularly and without air traffic control having to take the aircraft off the route as is often the case today (see paragraph 2.18). This means the route must be positioned further east than today (it is currently positioned over Rochester) so there is more time for departures to climb before they cross the arrival flow that follows the Thames Estuary. This requirement dictates the positioning of the consultation swathe over east Essex before turning south over Kent.

Please indicate which, if any, place(s) or area(s) within the consultation swathes you think require special consideration in the on-going design process. Please describe the characteristics of these locations, stating whether they should be considered due to concerns about noise impact, visual impact and/or any other impact.

Please refer to the consultation swathes highlighted on the maps in Figures E8 and E9.

Please go to the online questionnaire at www.londonairspaceconsultation.co.uk to give your answers to these questions.
Phase 2 changes

4.17 Part A of the consultation document describes how this consultation is part of a phased development of airspace across a wide region of London and the Southeast.

4.18 This consultation is relevant for the Phase 1 proposals, and is also relevant for any further development of the same airspace required for Phase 2. Reconsultation on the areas covered here is not required for Phase 2 unless the Phase 2 design work identifies new effects that we have not captured in this consultation document. In the event of any new effects we will add them to the Phase 2 consultation. Regardless of this we will continue to engage with key representative bodies (such as consultative committees, planning authorities and aviation groups) as part of the Phase 2 development programme to ensure that the design process is transparent.

Please provide any other information that you feel is relevant to the on-going development of the airspace covered by this consultation.

Please go to the online questionnaire at www.londonairspaceconsultation.co.uk to give your answers to these questions
Notes for Figure E8
The coloured shading on the map denote the consultation swathe for positioning the London City and London Biggin Hill arrivals between 4,000 and 7,000ft. The final positions of the routes within these areas will be determined after consultation feedback has been analysed. The position of the routes will determine how areas within the shaded regions are impacted; areas beneath the final routes would expect more overflights than today, and areas away from the routes would expect fewer.

Table E1 shows the potential number of flights that could pass directly overhead if the route was positioned overhead. This is a pessimistic prediction as it assumes all aircraft are kept on the route in question rather than being vectored off it by air traffic control, which in reality would occur some of the time. A detailed traffic breakdown is provided in Appendix H.

<table>
<thead>
<tr>
<th>Route</th>
<th>2016</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival day time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0620-2200)</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Arrival night time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2200-0620)</td>
<td>closed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E1: Forecast for route usage (London City and London Biggin Hill)
Numbers are hourly averages. See paragraph 4.13 for discussion of opening times and Appendix H for a more detailed traffic breakdown.

Table E2 provides L_{max} noise information for the typical and noisiest aircraft regularly flying to/from London City. More noise information can be found in Appendix J. L_{max} is the maximum noise at ground level from an aircraft flying directly overhead. The L_{max} values may be compared to Table E3 for everyday equivalents. Additional overflight videos are provided on the webpage to help stakeholders understand what aircraft at various altitudes may look and sound like.

<table>
<thead>
<tr>
<th>Aircraft type</th>
<th>% of flights</th>
<th>4,000-5,000ft</th>
<th>5,000-6,000ft</th>
<th>6,000-7,000ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>46</td>
<td>56-57 dBA</td>
<td>55-56 dBA</td>
<td><55dBA</td>
</tr>
<tr>
<td>E190/E170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noisiest</td>
<td>1.4</td>
<td>59-61 dBA</td>
<td>57-59 dBA</td>
<td>56-57 dBA</td>
</tr>
<tr>
<td>A318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E2: Typical Noise (L_{max}) (Arrivals) at various heights

<table>
<thead>
<tr>
<th>Noise</th>
<th>Noise level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainsaw, 1m distance</td>
<td>110</td>
</tr>
<tr>
<td>Disco, 1m from speaker</td>
<td>100</td>
</tr>
<tr>
<td>Diesel truck pass-by, 10m away</td>
<td>90</td>
</tr>
<tr>
<td>Kerbside of busy road, 5m away</td>
<td>80</td>
</tr>
<tr>
<td>Vacuum cleaner, distance 1m</td>
<td>70</td>
</tr>
<tr>
<td>Conversational speech, 1m</td>
<td>60</td>
</tr>
<tr>
<td>Quiet office</td>
<td>50</td>
</tr>
<tr>
<td>Room in quiet, suburban area</td>
<td>40</td>
</tr>
</tbody>
</table>

Table E3: Tables of L_{max} Equivalents
Source: Airports Commission, based substantially on www.sengpielaudio.com/TableOfSoundPressureLevels.htm

25 Includes the following aircraft types: Embraer 170/175/190/195 (Ancon category, 70-90 seat regional jet)
26 This table shows L_{max} at a height above ground level. Local elevation should be taken into account. See footnote 21 on page E24
Figure E8: Consultation swathe for London City Airport Arrivals between 4,000ft and 7,000ft
Notes for Figure E9

The coloured shading on the map denote the consultation swathe for positioning the London City departures between 4,000 and 7,000 ft.

The final positions of the routes within these areas will be determined after consultation feedback has been analysed. The position of the routes will determine how areas within the shaded regions are impacted; areas beneath the final routes would expect more overflights than today, and areas away from the routes would expect fewer.

Table E4 shows the potential number of flights that could pass directly overhead if the route was positioned overhead. This is a pessimistic prediction as it assumes all aircraft are kept on the route in question rather than being vectored off it by air traffic control, which in reality would occur some of the time. A detailed traffic breakdown is provided in Appendix H.

Table E4: Forecast for route usage (London City)

<table>
<thead>
<tr>
<th>Route</th>
<th>2016</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southbound departure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day time (0630-2210)</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Southbound departure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Night time (2210-0630)</td>
<td></td>
<td></td>
<td>closed</td>
</tr>
</tbody>
</table>

Table E5 provides L_{max} noise information for the typical and noisiest aircraft regularly flying to/from London City. More noise information can be found in Appendix J. L_{max} is the maximum noise at ground level from an aircraft flying directly overhead. The L_{max} values may be compared to Table E6 for everyday equivalents. Additional overflight videos are provided on the webpage to help stakeholders understand what aircraft at various altitudes may look and sound like.

<table>
<thead>
<tr>
<th>Aircraft type</th>
<th>% of flights</th>
<th>4,000-5,000ft dB</th>
<th>5,000-6,000ft dB</th>
<th>6,000-7,000ft dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical</td>
<td>46</td>
<td>61-64 dB</td>
<td>58-61 dB</td>
<td>56-58 dB</td>
</tr>
<tr>
<td>E190/E170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noisiest</td>
<td>1.4</td>
<td>63-66 dB</td>
<td>60-63 dB</td>
<td>59-60 dB</td>
</tr>
<tr>
<td>A318</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E5: Typical Noise (L_{max}) (Departures) at various heights

Table E6: Tables of L_{max} Equivalents

<table>
<thead>
<tr>
<th>Noise</th>
<th>Noise level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chainsaw, 1m distance</td>
<td>110</td>
</tr>
<tr>
<td>Disco, 1m from speaker</td>
<td>100</td>
</tr>
<tr>
<td>Diesel truck pass-by, 10m away</td>
<td>90</td>
</tr>
<tr>
<td>Kerbside of busy road, 5m away</td>
<td>80</td>
</tr>
<tr>
<td>Vacuum cleaner, distance 1m</td>
<td>70</td>
</tr>
<tr>
<td>Conversational speech, 1m</td>
<td>60</td>
</tr>
<tr>
<td>Quiet office</td>
<td>50</td>
</tr>
<tr>
<td>Room in quiet, suburban area</td>
<td>40</td>
</tr>
<tr>
<td>Quiet library</td>
<td>30</td>
</tr>
</tbody>
</table>

Table E6: Tables of L_{max} Equivalents

Source: Airports Commission, based substantially on www.sengpielaudio.com/TableOfSoundPressureLevels.htm

27 Includes the following aircraft types: Embraer 170/175/190/195 (Ancon category, 70-90 seat regional jet)

28 This table shows L_{max} at a height above ground level. Local elevation should be taken into account. See footnote 21 on page E24
Figure E9: Consultation swathe for London City Airport departures between 4,000ft and 7,000ft