Specification for an Offshore Helideck Lighting System

CAP 1077
© Civil Aviation Authority 2013

All rights reserved. Copies of this publication may be reproduced for personal use, or for use within a company or organisation, but may not otherwise be reproduced for publication.

To use or reference CAA publications for any other purpose, for example within training material for students, please contact the CAA at the address below for formal agreement.

Enquiries regarding the content of this publication should be addressed to:
Flight Operations, Safety Regulation Group, Civil Aviation Authority, Aviation House, Gatwick Airport South, West Sussex, RH6 0YR.

The latest version of this document is available in electronic format at www.caa.co.uk/publications, where you may also register for e-mail notification of amendments.
CAP 1077

Specification for an Offshore Helideck Lighting System
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Executive Summary</td>
<td>8</td>
</tr>
<tr>
<td>Section 1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Overview</td>
<td>11</td>
</tr>
<tr>
<td>Section 2</td>
<td>Background</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>NAM K14B Trials</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Longside Airfield Trials</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Norwich Airport Trials</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>The New Helideck Lighting Scheme</td>
<td>17</td>
</tr>
<tr>
<td>Section 3</td>
<td>Derivation of the Specification</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Specifying Helideck Lighting Intensity</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Perimeter Lighting</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Touchdown/Positioning Marking Circle</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Heliport Identification Marking (‘H’)</td>
<td>29</td>
</tr>
<tr>
<td>Section 4</td>
<td>Initial Validation of the Specification</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>In-Service Trials of Prototype System</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>In-Service Trials of Prototype System</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Summary of Results from In-Service Trials</td>
<td>43</td>
</tr>
<tr>
<td>Section 5</td>
<td>Final Validation of the Specification</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>In-Service Trials of Production System</td>
<td>52</td>
</tr>
</tbody>
</table>
Foreword

1. This report effectively represents the culmination of the CAA's helideck lighting research programme, funded by the CAA's Safety and Airspace Regulation Group (SARG), the Offshore Division of the UK Health and Safety Executive, and Oil and Gas UK. The flight trials campaigns at the NAM K14 platform, Longside Airfield and at Norwich Airport, reported in CAA Papers 2004/01, 2005/01 and 2006/03 respectively, provided the data and experience to enable a draft technical specification to be produced. The specification was then used to tender for the production of prototype lighting systems for installation on offshore helidecks for in-service trials to validate the specification.

2. The revised perimeter lighting has already been adopted by ICAO as a new minimum international standard for a touchdown and lift-off area (TLOF) lighting system in Annex 14 Vol.II, effective from 01 January 2009. In addition, the Touchdown/Positioning Marking circle and Heliport Identification Marking ('H') lighting forms an acceptable alternative to floodlighting in these specifications.

3. Following the successful in-service trials and CAA flight evaluation of the first production version of the new lighting on the Centrica CPC-1 helideck in Morecambe Bay during winter 2012/13, and in view of AAIB Safety Recommendation 2011-53 arising from the accident to G-REDU at the BP ETAP platform in February 2009, the CAA has replaced floodlighting with the new circle and H lighting in its standards material published in CAP 437, 7th Edition, Amendment 01/2013. The CAA has proposed that the new lighting be installed on half of all helidecks in the UK waters by 31 March 2016, with the remainder to be retrofitted by 31 March 2018.

4. This report essentially comprises an updated version of CAA Paper 2012/03 and supersedes that document.
Executive Summary

1. Starting in 1995, the UK CAA has conducted a number of dedicated offshore and onshore trials aimed at identifying ways of improving the lighting of offshore helidecks. This initiative was born out of concerns within the industry that were highlighted further in an independent offshore helicopter pilot opinion survey reported in CAA Paper 97009.

2. Three main problems exist with current helideck lighting systems:
 - The location of the helideck on the platform is often difficult to establish due to the lack of conspicuity of the perimeter lights.
 - Helideck floodlighting systems frequently present a source of glare and loss of pilots’ night vision on deck, and further reduce the conspicuity of helideck perimeter lights during the approach.
 - The performance of most helideck floodlighting systems in illuminating the central landing area is inadequate, leading to the so-called ‘black hole’ effect.

3. A series of three dedicated trials were conducted at the NAM K14B satellite in the southern North Sea during 1998/9 which established the basis of a new helideck lighting scheme. This scheme was tested and refined during two dedicated flight trials performed at an onshore site (Longside Airfield) during 2002. A third series of trials were then conducted at Norwich Airport to establish the detail of the lighting scheme to support the production of a specification.

4. These trials were completed in 2004, and a specification was drafted. Prototype systems were manufactured to meet the specification and installed on the Perenco Thames A platform in the southern North Sea and the Centrica CPC-1 platform in Morecambe Bay. The lighting systems were subjected to in-service trials to evaluate their performance in a representative offshore environment, over a range of meteorological conditions, and to expose the system to a larger number of pilots.
5. For various reasons the trials were not as extensive as had been expected, but the results obtained are nevertheless very encouraging. The main issue arising from the trials was that provision for increasing the intensity of the circle and ‘H’ lighting would be desirable to accommodate platforms with high levels of cultural lighting and/or helidecks with high luminance LED perimeter lights. Some issues regarding the durability of the lighting system were also experienced during the trials.

6. Drawing on the experience gained from the trials of the prototype systems, the specification was refined and a production version of the system was designed and manufactured by Orga bv in The Netherlands. Following a successful CAA flight evaluation and in-service trials of the production standard equipment on the Centrica CPC-1 platform in Morecambe Bay during winter 2012/13, the CAA has replaced floodlighting with the new circle and H lighting in its standards material in CAP 437, 7th Edition, Amendment 01/2013.

7. The UK oil and gas industry has committed to retrofitting the new lighting via the Oil & Gas UK (OGUK) Aviation Safety Technical Group (ASTG), and a joint industry working group has been established by OGUK in order to pool experience and expertise on installing the equipment.
SECTION 1
Introduction

Overview
This report provides a recommended technical specification for an offshore helideck lighting system in support of the CAA's standards material published in CAP 437 “Standards for Offshore Helicopter Landing Areas” [10]. The development of the system is described along with the production and validation of the associated technical specification.

SECTION 2
Background

General
2.1 The UK CAA has, for a number of years, been seeking to improve the performance of lighting schemes on offshore helidecks. The existence of scope for improvement was common knowledge within the industry, but the results of an offshore helicopter pilot questionnaire-based survey [1] added impetus and helped to focus efforts.

2.2 The questionnaire survey was actually performed in connection with a study of the pilot workload associated with the completion of flight deck paperwork, i.e. load and balance, and fuel planning. All aspects of offshore helicopter operations were covered, however, partly for camouflage (and, thus, to maximise objectivity) and partly in order that any problems relating to pilot workload could be better set in context.

2.3 Six of the 53 questions in the questionnaire related to helideck lighting. For each question, respondents were asked to score statements on a scale of one to ten. Top level analysis of the scores submitted by the pilots indicated that, of the 15 aspects of offshore operations covered by the questionnaire, helideck lighting at night was ranked 6th in terms of contribution to pilot workload and 4th highest in terms of contribution to safety hazards. These results are considered to support the case for improvement to offshore helideck lighting.
2.4 Respondents were also invited to submit written comments for a number of the questions. A total of 475 written comments were submitted for the six questions relating to helideck lighting and are reproduced in Appendix E of [2]. Review of these comments identified the following three main areas of concern:

- The location of the helideck on the platform is difficult to establish due to the lack of conspicuity of the perimeter lights - the yellow perimeter lights and white flood lights blend in with the yellow and white lighting widely used for general offshore installation lighting.

- The performance of most helideck floodlighting systems in illuminating the central landing area is inadequate, leading to a lack of visual cues and the so-called ‘black hole’ effect.

- Helideck floodlighting systems are frequently a source of glare and loss of pilots’ night vision on the deck, and further reduce the conspicuity of the helideck perimeter lights during the approach.

2.5 In view of the very good response rate (73%) to the survey, the results are considered to be robust and representative. The task of solving the three main deficiencies identified by the questionnaire survey was therefore adopted by the CAA as the primary objective of its research into helideck lighting systems.

2.6 Although some aspects of lighting are well understood, the overall effectiveness of lighting schemes depend on the environment in which they are required to operate and also the vagaries of human visual perception, neither of which are well defined. The research programme therefore initially took an empirical approach and comprised a number of offshore and onshore flight trials. The three main sets of trials were:

- the offshore trials conducted at the NAM K14B platform in the southern North Sea;

- the onshore trials performed at Longside Airfield near Aberdeen;

- the onshore trials performed at Norwich Airport.
2.7 The trials were used to evaluate different schemes and concepts but had to make use of existing available lighting products and prototype samples. Although good enough for demonstration purposes, this equipment was not necessarily suited to the application. Having established the scheme, it was therefore necessary to then apply the theory to produce a specification that could be used by the industry to produce and install optimised systems. The specification then needed to be validated to ‘close the loop’ prior to incorporation in any guidance or standards.

NAM K14B Trials

2.8 These trials were performed during 1998/99 using a S-76 helicopter chartered from Bristow Helicopters, and are reported in [2]. During these trials, the following changes to the current standard helideck lighting were evaluated:

- Changing the colour of the standard perimeter lights from yellow to green.
- Using green electro luminescent panel (ELP) lighting in lieu of the standard perimeter lighting.
- Illuminating the inner and outer edges of the Touchdown/Positioning Marking circle with yellow light-emitting diode (LED) strips.
- Illuminating the ‘H’ in the centre of the landing area with green ELP.
- Adding hoods to the floodlights.
- Turning the floodlights off.

These changes were applied in a number of combinations, and the relative benefits were assessed by means of questionnaires that were completed at the end of each approach by the trials pilots while the next lighting configuration was being set up.

2.9 Ratings for presentation and workload were awarded by the pilots on a ten-point scale. Each of the three trials commenced with an approach to the standard lighting configuration (yellow perimeter lights and floodlights without hoods), which was pre-allocated mid-scale workload and presentation ratings of five in order to ‘calibrate’ the pilots.

2.10 The main overall conclusions of this work were that:
- changing the colour of the perimeter lights from yellow to green greatly increased the conspicuity of the helideck and extended the acquisition range;

- illuminating the inner and outer edges of the Touchdown/Positioning Marking circle with yellow light-emitting diode (LED) strips significantly enhanced the visual cueing environment from the final approach through to touchdown;

- illuminating the ‘H’ in the centre of the helideck with green ELPs significantly enhanced the visual cueing environment during the final approach;

- the floodlights, with or without hoods, degraded the conspicuity of the helideck during acquisition and were a source of dazzle or glare to the pilots while the helicopter was on the deck.

Figure 1 Photograph of preferred lighting configuration as determined by the trials performed at the NAM K14B platform [2]
2.11 The recommended lighting configuration for providing a significantly enhanced visual cueing environment derived from these trials was; green incandescent perimeter lights, yellow LED strips illuminating the inner and outer edges of the Touchdown/Positioning Marking circle, green ELP illuminated ‘H’, and no floodlights. A photograph of this configuration taken during the trials is presented in Figure 1. Note that the ‘floodlighting’ visible in the photograph is stairwell lighting, i.e. part of the platform lighting and not helideck floodlights.

Longside Airfield Trials

2.12 The preferred configuration from the K14B trials was installed at Longside Airfield near Aberdeen, UK, for further experimentation. This onshore location was chosen to avoid the significant logistical difficulties associated with conducting offshore trials. These trials were performed during 2002 using a S-76 helicopter chartered from CHC Scotia Helicopters and are reported in [3].

2.13 The main aims of these trials were to evaluate a single lit Touchdown/Positioning Marking circle (as opposed to a double circle), an outline ‘H’ (instead of a solid ‘H’), and the effect of a helideck net on the various lighting configurations. If adequate, a single lit circle and an outline ‘H’ would be significantly less expensive to provide which would assist implementation of the final scheme.

2.14 Two trials were completed during 2002, one without a helideck net installed and one with. The overall conclusions of these trials were:

- Without a net, a single ring of yellow LED strips around the Touchdown/Positioning Marking circle was found to be adequate, and it was judged that this should be located mid-way between the inner and outer edges of the yellow painted marking.

- Without a net, an outline ELP ‘H’ was found to be better than the solid version.

- With a net fitted, there was a greater preference for two rings of yellow LED strips than was the case without the net.

- With a net fitted, the solid ‘H’ was much better than the outline version.

2.15 Further experimentation was required but the lack of suitable aircraft near to Longside, due to the relocation of the S-76 fleets, necessitated a move to a new location at Norwich Airport.
Norwich Airport Trials

2.16 A new test bed was then installed at Norwich Airport to continue the trials work started at Longside Airfield. These trails were performed during 2003/4 using a Eurocopter AS355 ‘Twin Squirrel’ helicopter chartered from Sterling Helicopters and are reported in [4].

2.17 The overall objective of this series of trials was to further improve and refine the revised helideck lighting system, obtain the information required to characterise the Touchdown/Positioning Marking circle and ‘H’ lighting, to evaluate the suitability of a number of current products and try out some new ideas. A total of six trials were completed and the ‘highlights’ included the following:

- Green perimeter lights meeting the revised vertical intensity distribution were evaluated and were favourably received by the trials pilots. No adverse effects of the increased intensity were noted.

- A minimum acceptable baseline for the yellow LED Touchdown/Positioning Marking circle was established in terms of coverage (length of LED segments vs. length of gaps), LED density and LED intensity.

- An outline ‘H’ formed using laser driven optical fibre was trialled and found to perform much better than the existing ELP ‘H’; this technology is more affordable, more robust and the on-deck hardware is completely inert.

- An LED Obstacle Free Sector (OFS) chevron marker was evaluated and found to be useful, but only during the very final stages of the approach and landing. The cueing provided was not considered to match that provided by the ELP ‘H’.

- The effect of vertical approach profile on the range of the LED Touchdown/Positioning Marking circle was investigated and useful results obtained.

- The application of laser driven optical fibre to illuminate the helideck net was trialled, but the result was considered to be too artificial or synthetic by the pilots.

- The effects of a helideck net on the key lighting configurations were evaluated, and no significant problems were encountered.

- The effect of rain on the cockpit windows was evaluated and found to be insignificant if not non-existent.
2.18 Together with the findings of the two earlier trials, these results enabled the new helideck lighting scheme to be finalised as described in the next section.

The New Helideck Lighting Scheme

2.19 The helideck lighting scheme established from the three sets of trials comprises:

- Green perimeter lighting located around the edge of the helideck, with the same layout as the current scheme but with changes to the characteristics of the individual lights.
- A lit yellow Touchdown/Positioning Marking circle superimposed on the current yellow painted marking.
- A lit green Heliport Identification marking superimposed on the white painted ‘H’.
- No floodlights.

2.20 Figure 2 presents a schematic of the preferred configuration as agreed by the ICAO Visual Aids Panel.

Figure 2 Schematic of the new helideck lighting scheme
2.21 The green perimeter lighting solves the problem of locating the helideck on the offshore installation by providing a good colour contrast. The pattern formed by the perimeter lighting forms the largest visual cue and is the first that the pilot will see during the approach. The perimeter lights provide visual cues throughout the approach and landing.

2.22 Between them, the lit circle and ‘H’ markings address the lack of visual cues in the centre of the helideck. Being physically larger, the circle provides good visual cues earlier in the approach than the ‘H’. The pilot derives range and approach path cues from the size and shape of the ellipse formed by the circle. Additional range cues are obtained from the gaps between the segments and then the gaps between the individual light elements within the segments as they become distinguishable as the approach progresses.

2.23 These cues are supplemented by the ‘H’ at closer ranges which provides the heading cues missing from the axially symmetric circle. The straight lines and vertices of the ‘H’ also provide good cues during the latter stages of the approach and especially while translating to the hover over the helideck. The ‘H’ also locates the 210° obstacle free sector, the cross bar of the ‘H’ being aligned with the bisector of the obstacle free sector.

2.24 Finally, the problems of glare and/or loss of night vision are solved by the removal of the floodlights. The absence of the floodlights also improves the conspicuity of the perimeter lights.

NOTE: It is recognised that on some platforms it may be desirable to retain the floodlights for providing illumination for on-deck operations such as refuelling. In such cases, the floodlights should be turned off for the approach, landing and take-off. In addition, particular care should be taken to maintain correct alignment to ensure that they do not cause dazzle or glare to the pilots while the helicopter is on the helideck. It may also be desirable to retain one or more floodlights to illuminate the platform name on the helideck.
3. Specifying Helideck Lighting Intensity

General
3.1 The three main factors that determine the intensity of the lighting required are:
 - the helicopter approach profiles and procedures;
 - the background lighting environment in which it has to work;
 - the meteorological conditions in which it has to work.

3.2 Although some account of the approach profiles and procedures could be taken, it was not possible to reproduce a representative offshore lighting environment at the Longside or Norwich Airport test sites, and it was not possible to control the weather during any of the trials. It was therefore necessary to apply the established theory to the trials results to take due account of all of these factors.

Calculation of Intensity
3.3 An important parameter is the range at which the pilot needs to be able to see the lighting which has a direct influence on the minimum intensity required. The visual range of a light is given by Allard’s Law, which shows that the brightness of a light will reduce as the inverse square of the range of the observer from the light, and will decay exponentially as a function of atmospheric attenuation (visibility). The equation used to define Allard’s Law is:

$$I = \frac{E_t R^2}{e^{-n}}$$

where:

$I =$ Intensity of the light unit (Candels).

$E_t =$ Eye illumination threshold (lux).

NOTE: The value of E_t depends on the background luminance and the probability of detection. The ICAO Annex 3 Attachment D value for a typical night of $E_t = 10^{-6.1}$ has been assumed in the absence of data relevant to offshore platforms.
R = Visual range of a light in the specified conditions of E, and σ.

σ = Extinction coefficient (m⁻¹). This represents the atmospheric attenuation.

NOTE: Using ICAO Annex 3 Attachment D, the extinction coefficient σ is given by: σ = 2.996/M

where:

M = Meteorological Visibility or Met Vis (M).

3.4 Remembering the issue of dazzle and glare identified from the questionnaire survey [1], it is also necessary to ensure that the lighting is not too bright at any point during the approach and landing.

Coverage in Azimuth

3.5 Given that approaches to offshore installations must be performed substantially into wind, helicopters can, in principle, approach the helideck from any direction. It follows, therefore, that the specified intensity of the helideck lighting pattern must be maintained for all angles of azimuth.

Coverage in Elevation

3.6 In the absence of instrument guidance, helicopter approaches to offshore platforms are conducted visually and are therefore subject to variability in terms of their vertical profiles. In order to try to quantify the flight paths which the lighting should accommodate, data from 271 night approaches to 52 different offshore platforms was made available by Bristow Helicopters from their Helicopter Operations Monitoring Programme (HOMP) - see [5] and [6]. Figure 3 shows the mean and the range of the vertical profiles as defined by this data set.
Figure 3 Vertical flight paths of helicopter visual approaches to offshore platforms at night

3.7 In Figure 4, these data are translated into the equivalent 'look down' angle, which is identical to the angle of elevation of the helicopter from the helideck and hence the helideck lighting.

Figure 4 Look down angles (elevation of helicopter from helideck lights) for helicopter visual approaches to offshore platforms at night
3.8 It is immediately clear that the elevation of the helicopter varies markedly with range from the helideck. Since the intensity required for a light to be visible to the pilot also varies with range, it follows that the minimum required intensity of the lighting will vary with the elevation of the helicopter. By controlling the distribution of intensity of the helideck lighting as a function of elevation, it is possible to ensure that the lighting is bright enough to be seen at longer ranges (lower elevations) without causing dazzle or glare at closer ranges (higher elevations).

Perimeter Lighting

3.9 The specification of the perimeter lighting for the new helideck lighting scheme is described in detail in Appendix A of [3].

Colour

3.10 A clear conclusion of the experimental work was that a good colour contrast between the helideck perimeter lighting and the installation ‘cultural’ lighting is necessary for adequate location of the helideck. Green was chosen because:

- it indicates a safe environment;
- it was found to be very conspicuous during the trials - it provides a good colour contrast and there is currently no other green lighting on offshore installations;
- the human eye is particularly sensitive to green light.

3.11 Inspection of the three definitions of ‘green’ in the international standards [7] indicates the appropriate colour coordinates to be:

- yellow boundary: \(x = 0.36 - 0.08y\)
- white boundary: \(x = 0.65y\)
- blue boundary: \(y = 0.39 - 0.171x\)

Intensity

3.12 In terms of intensity, the operational requirement is defined by the need for the pilot to be able to clearly see the lighting under the most onerous viewing conditions likely to be encountered in service. In the case of the helideck perimeter lights, these conditions are defined by the operating minima comprising the minimum decision range of 0.75 NM, and the minimum operating meteorological visibility of 0.75 NM.
3.13 Applying these values for visual range (R) and meteorological visibility (M), together with a value of $10^{-6.1}$ for the eye illumination threshold (E_t) to Allard’s law yields an intensity of 31 cd.

Coverage in Azimuth and Elevation

3.14 As explained in paragraph 3.5, the specified intensity of the helideck lighting pattern must be maintained for all angles of azimuth.

3.15 Inspection of Figure 4 indicates that intensity established in paragraphs 3.12 and 3.13 should be maintained for elevations from just above the horizontal to around 7.5 degrees as a minimum. Higher elevations are encountered at shorter viewing ranges where less intensity is required. The minimum intensity required for elevations above 7.5 degrees can be calculated using the range and elevation data from the upper curve in Figure 4.

3.16 At the time the specification was being developed, it had been recognised that the existing helideck perimeter light specification in the ICAO standards [8] was inappropriate, and discussions within the ICAO Visual Aids Panel had already resulted in a proposed new specification. The original and revised ICAO specifications are presented together with the specification detailed in Appendix A of [3] in Figure 5.

Figure 5 Comparison of perimeter light intensity distributions
(original and new ICAO, and the UK CAA)
3.17 As well as stipulating yellow light, the original ICAO specification provides insufficient intensity at elevations below about 8 degrees, and significantly more than is necessary at elevations between 10 and 30 degrees. The new ICAO specification, which was developed for onshore heliport applications as much as for offshore helidecks, specifies the green light found to be very effective during the UK trials and is much improved in terms of intensity distribution. The minimum intensity at the lowest elevations, however, is still arguably insufficient for use offshore, although the specification does note that the main beam may need to be extended down to the horizontal for some applications.

3.18 The specification being developed in the UK was adjusted to either meet or exceed the proposed new ICAO specification at all angles of elevation. In addition, in order to avoid glare a maximum intensity of 60 cd was adopted for all angles of elevation and azimuth. This figure was taken from a study performed in The Netherlands by TNO Human Factors [9], and was validated during the trials at Norwich Airport [4].

3.19 The UK specification is identical to the new ICAO specification in all other respects, and the final specification adopted for CAP 437 [10] is detailed in Table 1 below. Note that no need to change the existing requirements in respect of the number and spacing of helideck perimeter lights was identified by either the UK trials or by ICAO.

Table 1 New CAP 437 helideck perimeter light intensity specification

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>0º - 10º</td>
<td>30 cd</td>
</tr>
<tr>
<td>>10º - 20º</td>
<td>15 cd</td>
</tr>
<tr>
<td>>20º - 90º</td>
<td>3 cd</td>
</tr>
<tr>
<td>Azimuth</td>
<td>-180º to +180º</td>
</tr>
</tbody>
</table>
Touchdown/Positioning Marking Circle

General

3.20 The basic concept of the lit Touchdown/Positioning Marking circle was established during the first set of trials at the K14 [2], but the majority of the work on the detail of this aspect of the lighting scheme was undertaken during the Longside Airfield [3] and Norwich Airport [4] trials. The circle design parameters investigated were:

- the number and location of circles;
- the proportion of the circle that was lit (coverage);
- the density of light sources within the segments forming the lit circle;
- the intensity of the lit circle.

3.21 Although it was only practical to evaluate a limited number of permutations of the circle design during the trials, it is considered that the results are sufficiently conclusive to be used with some confidence. It was concluded from the results of the three trials that the lit circle should meet the following requirements:

- It should comprise one or more concentric circles each of at least 16 discrete lighting segments; a single circle should be positioned at the mean radius of the painted circle; multiple circles should be symmetrically disposed about the mean radius of the painted circle.
- The lighting segments should be of such a length as to provide coverage of between 50% and 75% of the circumference, and be equidistantly placed with the gaps between them not less than 0.5 m.
- The lighting segments should comprise a number of lighting elements, spaced no less than 3 cm and no greater than 10 cm.
- In order to mitigate the effects of a landing net, the width of the segments should not be less than 40 mm.

3.22 Although the precise design of the circle is not critical to its effectiveness, it was noted that the benefits of the scheme following deployment in-service will be maximised if the cueing is consistent from one helideck to the next. It therefore follows that it is desirable for the above constraints to be placed on the design of the circle to ensure an appropriate degree of consistency.
Colour

3.23 The obvious choice of colour for the circle would be to match the colour of the yellow painted circle. Discrimination of the yellow circle from any yellow cultural lighting on the platform is not an issue here because:

- the circle is located in a dark area separated from the platform lighting;
- the circle is delineated from the platform lighting by the green helideck perimeter lighting; and
- the distinct pattern of the circle provides contrast against the general platform lighting.

3.24 Inspection of the international standards [7] indicates the appropriate colour coordinates to be:

- red boundary: \(x = 0.382 \)
- white boundary: \(y = 0.79 - 0.667x \)
- green boundary: \(y = x - 0.12 \)

Intensity

3.25 As regards intensity, it was established during the Norwich Airport trials [4] that the minimum range at which the circle should be visible to the pilot should be 0.5 NM.

3.26 Given this visual range (\(R \)), the minimum operating meteorological visibility (\(M \)) of 0.75 NM and an eye Illumination threshold (\(E_i \)) of \(10^{-6.1} \), the intensity required of a point source of light can be calculated using Allard’s law as for the perimeter lights.

3.27 However, the Touchdown/ Positioning Marking circle is too large to qualify as a point source and there is no known methodology for calculating its effective intensity. In the absence of any better information, the results of some empirical research performed by deBoer on narrow rectangular lights were used to calculate the required intensity for a single circle segment. This involved calculating the minimum point source intensity required using Allard’s law, and then multiplying the result by a ‘Rectangular Shape Factor’ to produce the minimum total segment intensity. The ‘Rectangular Shape Factor’ is a function of the angle subtended by the segment at the eye of the observer as follows:
Shape Factor = \[\tan^{-1} \left(\frac{60 \cdot L}{R} \right) \]^{0.6} \\
where: \\
L = Length of circle segment (m). \\
R = Visual range (m). \\

NOTE: The relationship established experimentally by deBoer was at a background luminance of 300 Nits, which equates approximately to \(E_t = 10^{-6.0} \). This is a little inconsistent with the value of \(E_t \) used elsewhere for this work (\(E_t = 10^{-6.1} \)), but produces a conservative result.

3.28 This assumes that the segment is being viewed ‘broadside’ where the light emitted by the segment will appear most spread out to the observer, i.e. the worst case. The minimum total segment intensity therefore varies as a function of segment length as follows:

\[
\text{Intensity} = E_t \cdot R^2/e^{-s} \left[\tan^{-1} \left(\frac{60 \cdot L}{R} \right) \right]^{0.6}
\]

3.29 The relationship for \(R = 0.5 \text{ NM}, M = 0.75 \text{ NM} \) and \(E_t = 10^{-6.1} \) is shown graphically in Figure 6. Note that the minimum segment length compliant with the minimum gap size of 0.5 m and the minimum circle coverage of 50% is 0.5 m. A segment length of 2.5 m and coverage of 75% would correspond to a helideck ‘D’ value (see [10]) of at least 32 m and therefore represents the likely maximum length in practice.

Figure 6 Variation of minimum Touchdown/Positioning Marking circle segment intensity with segment length
3.30 Hence, the circle segment length is first established from the circle diameter, the number of segments and the coverage, and the total segment intensity is then calculated. The intensity of each light element (e.g. LED) within the segment is then simply the total required segment intensity divided by the number of light elements. The number of light elements is determined from the segment length and the spacing of the light elements (i.e. between 3 and 10 cm).

Coverage in Azimuth

3.31 Given the axial symmetry of the circle, it follows that the circle will automatically be visible from all angles of azimuth. However, since the visual cueing provided by the circle depends on the pilot being able to see the whole of the circle, it is necessary for the minimum segment intensity determined by Section 3.5 to be maintained for all angles of azimuth.

3.32 Since this may be difficult to achieve in practice (e.g. due to the need for cable entry/exit provisions), the light intensity for each of the lighting segments specified in Section 3.5 need only be maintained over the range + 80° to - 80° from the normals (i.e. the normals to the sides of the segment that will form both the inside and outside edges of the circle) to the longitudinal axis of the strip.

3.33 This range of azimuth has been derived by considering the worst case which is represented by the configuration with the smallest change in orientation of the segment longitudinal axis from one segment to the next (i.e. largest circle with largest number of strips). A 22 m helideck with a mean circle diameter of 12 m and a segment length of 0.5 m, results in 36 segments and a change in orientation from one segment to the next of 10°. Hence no more than two segments (at the 3 o’clock and 9 o’clock positions) will ever be viewed from outside the + 80° to - 80° range. This is considered satisfactory.

3.34 For the remaining angles of azimuth of + 10° to -10° either side of the longitudinal axis of the segment, the maximum intensity should be as defined in Table 2.
Table 2 Touchdown/Positioning Marking circle segment intensity specification

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Intensity</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º - 10º</td>
<td>As a function of segment length as defined in Figure 6</td>
<td>60 cd</td>
<td></td>
</tr>
<tr>
<td>>10º - 20º</td>
<td>25% of min intensity >0º to 10º</td>
<td>45 cd</td>
<td></td>
</tr>
<tr>
<td>>20º - 90º</td>
<td>5% of min intensity >0º to 10º</td>
<td>10 cd</td>
<td></td>
</tr>
<tr>
<td>Azimuth</td>
<td>-80º to +80º</td>
<td>-90º to +90º</td>
<td></td>
</tr>
</tbody>
</table>

* Measured from normals to longitudinal axis of circle segment.

Coverage in Elevation

3.35 The minimum segment intensity at the minimum acquisition range of 0.5 NM should be as specified in paragraphs 3.25 to 3.30. Referring to Figure 4, this value of intensity should be maintained for elevations from around 1 degree up to about 8 degrees as a minimum. Higher elevations are encountered at shorter viewing ranges where less intensity is required or wanted (risk of glare). Consideration of these factors resulted in the specification detailed in Table 2 above.

3.36 The maximum ‘main beam’ intensity of 60 cd in Table 2 derives from [9] as for the perimeter lights. The maximum intensities at higher elevations are, to some extent, arbitrary, but are based on practical design considerations and the overall aim for the luminance of the perimeter lights to be equal to or greater than that of the Touchdown/Positioning Marking circle segments.

Heliport Identification Marking (‘H’)

General

3.37 Illuminating the ‘H’ marking in the centre of the helideck was one of the ideas tried out during the first set of trials at the K14 [2]. The initial configuration comprised a ‘filled’ ‘H’ lit using electro-luminescent panels (ELPs). This was assessed further in outline form also using ELPs during the Longside trials [3]. Finally, a laser illuminated ‘leaky’ optical fibre version of an outline ‘H’ was evaluated at Norwich [4].
3.38 In the absence of a helideck net, there was no strong preference for either the ‘filled’ or the outline ‘H’, but with a net the filled ‘H’ was preferred. A firm conclusion, however, was that the lit ‘H’ should be the same size as the 4 m x 3 m painted ‘H’ regardless of which version is used. The dimensions of the ‘filled’ and outline ‘H’ are shown schematically in Figures 7 and 8 respectively.

Figure 7 Filled ‘H’ marking

![Filled 'H' marking](Image)

Figure 8 Outline form of ‘H’ marking

![Outline form of 'H' marking](Image)
3.39 Although both forms of ‘H’ would perform satisfactorily, it was considered desirable that the scheme utilised just one in the interests of standardisation and the benefits that it confers. The outline ‘H’ was selected partly because it was expected to be significantly cheaper to produce, and partly due to concerns regarding the large lit area of the filled ‘H’ for which it would be difficult to achieve and maintain the minimum required helideck friction.

Colour

3.40 The obvious choice of colour for the lit ‘H’ marking might have been white to match the colour of the painted ‘H’. At the time of the trials, however, no suitable lighting technology was available to provide a lit white ‘H’. Green ELP was therefore used partly due to its availability, but also for the same reasons that green was chosen for the helideck perimeter lights, i.e. the good colour contrast against the installation cultural lighting.

3.41 As for the perimeter lights, the appropriate colour coordinates in the international standards [7] are:

- yellow boundary: \(x = 0.36 - 0.08y \)
- white boundary: \(x = 0.65y \)
- blue boundary: \(y = 0.39 - 0.171x \)

Intensity

3.42 In terms of intensity, it was established during the Norwich Airport trials [4] that the minimum range at which the ‘H’ marking should be visible to the pilot should be 0.25 NM. The required intensity for the ‘H’ can be calculated in the same manner as the Touchdown/Positioning Marking circle segment, i.e. using a visual range (R) of 0.25 NM, the minimum operating meteorological visibility (M) of 0.75 NM, an eye illumination threshold (\(E_t \)) of \(10^{-6.1} \), and the deBoer Rectangular Shape Factor. The segment length assumed for the calculation of the shape factor is the 4 m edge of the ‘H’. This yields a minimum intensity for the 4 m edge of the ‘H’ at the minimum acquisition range of 0.25 NM of 3.5 cd.
Coverage in Azimuth and Elevation

3.43 For the reasons stated in paragraph 3.5, the values of intensity detailed in Table 3 should be maintained for all angles of azimuth.

3.44 Referring to Figure 4, the value of intensity derived in paragraph 3.42 should be maintained for elevations from around 2 degrees up to about 12 degrees as a minimum. Higher elevations are encountered at shorter viewing ranges where less intensity is required or wanted (risk of glare). Consideration of these factors resulted in the specification detailed in Table 3.

Table 3 Heliport Identification marking (4 m edge) intensity specification

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Intensity</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>2° - 12°</td>
<td>3.5 cd</td>
<td>60 cd</td>
</tr>
<tr>
<td>>12° - 20°</td>
<td>0.5 cd</td>
<td>30 cd</td>
</tr>
<tr>
<td>>20° - 90°</td>
<td>0.2 cd</td>
<td>10 cd</td>
</tr>
<tr>
<td>Azimuth</td>
<td>-180° to +180°</td>
<td></td>
</tr>
</tbody>
</table>

3.45 The maximum ‘main beam’ intensity of 60 cd in Table 3 derives from [9] as for the perimeter lights. Similar maximum intensities have been adopted for the circle and the ‘H’ at higher elevations as the relatively low intensity of the lighting and the close range of the helicopter renders any discrimination unimportant. The maximum intensities at higher elevations are, to some extent, arbitrary, but are based on practical design considerations and the overall aim for the luminance of the Touchdown/ Positioning Marking circle segments to be equal to or greater than that of the ‘H’.
SECTION 4
Initial Validation of the Specification

General
4.1 The specification described in the foregoing sections has been derived from a mixture of empirical and theoretical studies. In addition, much of the trials work was performed in an unrepresentative lighting environment, in a very limited range of meteorological conditions, and by a small number of pilots. It was therefore considered necessary to perform a final check of the specification prior to incorporating it in the standards material.

4.2 Normal aviation practice is to conduct an in-service trial where, in this case, a prototype of the new lighting scheme is installed on an offshore installation and feedback on its performance collected via aircrew questionnaires. In view of its location in the centre of the helideck, an additional important aspect of the circle and ‘H’ lighting that needs to be evaluated is the durability of the equipment in this harsh operating environment.

4.3 The specification for the new scheme was therefore tendered to a number of helideck lighting manufacturing companies and, following a bid evaluation and selection process, contracts were awarded to two competing companies. It was considered desirable for the trial to be conducted using two independent lighting system solutions. Firstly, this would enable two different solutions to be evaluated and hence maximise the probability of a successful outcome. Secondly, it would avoid a single company dominating the market at the end of the trial. This latter point was of particular concern since the CAA cannot directly mandate the improved lighting system, and it was feared that a monopoly situation could act as a deterrent to industry take-up. Unfortunately, one of the companies failed to make satisfactory progress and their contract had to be terminated and the project continued with a single company, AGI Ltd.
4.4 The contract awarded to AGI Ltd was to initially produce one prototype system. The equipment was designed, manufactured and tested, and was installed on the Perenco Thames A installation in the southern North Sea. This system had to be replaced with a modified version and a third system was commissioned and installed on the Centrica CPC-1 platform in Morecambe Bay.

In-Service Trials of Prototype System at the Perenco Thames A Platform

General

4.5 The installation of the system on the Thames A was completed at the beginning of February 2007. A photograph of the system installed on the Thames A is presented in Figure 9 below, with photographs of a Touchdown/Position Marking circle segment and the Heliport Identification Marking 'H' in Figures 10 and 11 respectively.

Figure 9 AGI prototype lighting system on the Thames A
Figure 10 Touchdown/Positioning Marking circle segment on the Thames A

Figure 11 Heliport Identification Marking (‘H’) on the Thames A
Initial Trials

4.6 The trials proforma (see Appendix A) was issued to CHC Scotia at North Denes, the helicopter operator, shortly after the installation had been completed but, unfortunately, only three reports had been received by the end of the winter 2006/7 night flying season. The initial feedback provided by the proformas was somewhat mixed. The results are summarised in Table A1 in Appendix A.

4.7 At 0.25 NM, the range of the Touchdown/Positioning Marking circle was rated lower than the design aim of 0.5 NM for two out of the three approaches (proformas 1 and 3), although only one of these two pilots considered this to be too late in the approach (proforma 3).

4.8 The Heliport Identification Marking (‘H’) performed as anticipated having a usable range of 0.25 NM for all three approaches. All pilots considered this to be satisfactory, and this is in accordance with the design aim.

4.9 As regards the overall ratings, two pilots awarded maximum ratings (proformas 1 and 3) and the other felt that the system did not represent a significant improvement. Curiously, the pilot who considered the performance of the circle inadequate (proforma 3) rated the system more highly than the pilot who found it usable at the design minimum range of 0.5 NM (proforma 2).

4.10 Turning to the comments, the most positive feedback was received from the pilot who was least familiar with the platform (proforma 1). The pilot who was a regular visitor and gave the lowest overall ratings (proforma 2) noted that it might be of greater benefit in conditions of low visibility. In addition, the comments made by the other pilot who was familiar with the platform (proforma 3) imply that he thought the lighting would be more useful on satellite platforms where the visual cueing environment is poorer.

Dedicated Trial

4.11 A Sikorsky S-76 helicopter was chartered from CHC Scotia Helicopters and a dedicated trial was performed in July 2007 for the benefit of ICAO Heliport Design Working Group, Visual Aids and Offshore Sub-Group members. During this trial it was noticed that the green ‘H’ appeared brighter than the Touchdown/Positioning Marking circle which was unexpected. Subsequent tests established that the LEDs used to produce the circle segments and the ‘H’ did not conform to the LED manufacturer’s specification sheet. In particular, the yellow LEDs used...
for the circle segments were only about half the required intensity at low angles of elevation where the intensity requirement is highest. This had not been detected during the production of the system as no photometric testing of the panels had been performed, this in order to expedite installation in a bid to take advantage of the winter 2006/7 night flying season.

4.12 A replacement system was subsequently produced and installed on the Thames A in April 2008 which, unfortunately, was after the end of the 2007/8 night flying season. Leading up to the 2008/9 night flying season, the system suffered from water ingress to the electrical connectors despite them being specified to be IP66 rated. An attempt to rectify the problem by replacing the connectors with potted in-line splices was made but the rework resulted in damage to the panels and further water ingress. Despite several attempts to rectify the problem, the system never remained serviceable for long enough to conduct any further evaluations and the trial was discontinued.

Conclusions

4.13 It was established that the Touchdown/Positioning Marking circle initially installed did not meet the specification and the mixed feedback obtained is thus entirely understandable. The ‘H’ appeared to perform satisfactorily but this result should be treated with caution as the photometric characteristics of the ‘H’ were not in accordance with the specification.

4.14 Despite the unrepresentative performance of the lighting, the comments received from the pilots participating in the in-service trial and the observers who attended the demonstration flight were generally positive.

4.15 It was concluded that the system showed good promise, but that a further in-service trial was required using a system confirmed to meet the photometric specification and of a design that is more resistant to water ingress.
In-Service Trials of Prototype System at the Centrica CPC-1 Platform

General

4.16 The installation of the system on the CPC-1 was completed at the beginning of February 2009. A photograph of the system installed on the CPC-1 is presented in Figure 12 below, with photographs of a Touchdown/Positioning Marking circle segment and the ‘H’ in Figures 13 and 14 respectively.

Figure 12 AGI prototype lighting system on the CPC-1

Figure 13 Touchdown/Positioning Marking circle segment on the CPC-1
4.17 The same trials proforma as used for the trial on the Thames A (see Appendix A) was issued to CHC Scotia at Blackpool. The trial commenced mid-February 2009 and a total of ten proformas (covering 14 approaches) were returned before the trial had to be suspended due to some sections of the ‘H’ becoming detached from the deck surface. One further proforma was received in June 2009 after the ‘H’ had been refitted. The results from the proformas are summarised in Table A2 in Appendix A.

4.18 The majority of the results are very positive, suggesting that the system performed as intended. Due to the short duration of the trial, however, the range of meteorological conditions experienced was quite small. All evaluations were performed in good visibility and precipitation was present in only one case (proforma 2). Whereas these factors would be expected to lead to better results, it should be noted that all pilots were regular visitors to the platform; during the initial trial at the Thames A, regular visitors appeared to be more critical of the system.
4.19 The results for the Touchdown/Positioning Marking circle are very encouraging. The minimum usable range of 0.5 NM or greater was achieved in all but one evaluation (proforma 5); a usable range of 0.75 NM was reported in four evaluations (proformas 3, 7, 8, and 11). The usable range was considered satisfactory in all cases except for two (proformas 5 and 9), one of which corresponded to the case where a range of only 0.25 NM was experienced (proforma 5). The intensity of the circle at close range was judged to be ‘about right’ in all cases apart from this case (proforma 5).

4.20 The results for the Heliport Identification Marking (‘H’) are also considered encouraging. The design minimum usable range of 0.25 NM was reported in seven out of the ten evaluations (the ‘H’ was inoperative in one case - proforma 10), and achieved 0.5 NM in four cases (proformas 4, 7, 8, and 11). In three cases the ‘H’ only achieved a usable range of 0.1 NM (proformas 3, 5, and 6), one of which corresponded to one of the cases where a low usable range was also reported for the circle (proforma 5). The usable range was considered satisfactory in all cases apart from one (proforma 9); curiously, the usable range was reported to be 0.25 NM in this case. The intensity of the ‘H’ at close range was judged to be ‘about right’ in all cases.

4.21 As regards the overall ratings for the approach, the maximum rating was awarded in eight cases, a high rating in two (proformas 3 and 9) and a neutral rating in one case (proforma 4). It should be borne in mind that the one neutral rating was associated with a daylight approach; the system was not designed for daylight use where higher intensities would be required ($E_t = 10^{-6.1}$ was used for the design of the lighting, $E_t = 10^{-4.0}$ for typical day lighting conditions). For the landing, the maximum rating was awarded in six cases, and a high rating in five (proformas 3, 4, 7, 8, and 9). In terms of comparing the lighting with helideck lighting meeting current standards, eight pilots awarded the highest rating, two a high rating (proformas 3 and 9) and one had no opinion (proforma 4).

4.22 Relatively few comments were noted, but those received were positive and two very positive indeed (proformas 1 and 11).
Further Trials

4.23 The in-service trials on the CPC-1 recommenced on 27 October 2009 and a total of six proformas (covering 15 approaches) were returned before the trial had to be suspended due to an electrical fault on the lighting system. The results from the proformas are summarised in Table A3 in Appendix A.

4.24 One of the results was positive and the rest were very positive. This is considered very encouraging as 12 approaches (proformas 4, 5 and 6) were conducted in conditions of low visibility, and six (proformas 4 and 6) in conditions of low visibility and rain.

4.25 The usable range for the Touchdown/Positioning Marking circle was estimated at 0.75 NM for 12 out of the 15 approaches (proformas 1, 5 and 6), and the minimum usable range of 0.5 NM was achieved for the remaining three (proformas 2, 3 and 4). The usable range was considered satisfactory and the intensity of the circle at close range was judged to be ‘about right’ in all cases.

4.26 The design minimum usable range for the Heliport Identification Marking (‘H’) of 0.25 NM was achieved in all cases but one (proforma 1) where a range of 0.1 NM was achieved. Curiously, this coincided with a reported usable range for the circle of 0.75 NM. Nevertheless, the range for the ‘H’ was considered satisfactory and the intensity of the ‘H’ at close range was judged to be ‘about right’ in all cases.

4.27 As regards the overall ratings for the approach, the maximum rating was awarded in five cases (proformas 2 through 6), and a high rating in one (proforma 1). The same result was obtained for the landing. In terms of comparing the lighting with helideck lighting meeting current standards, the highest rating was awarded in all cases except one (proforma 1). A high rating was nevertheless awarded in that case which coincided with a low minimum usable range for the ‘H’ of 0.1 NM.

4.28 Only one comment was posted (proforma 4), and this was very positive.
Demonstration Trial

4.29 Two dedicated flights were conducted to the CPC-1 on 02 November 2009 using two CHC Scotia Helicopters AS365N Dauphin helicopters. The purpose of the flights was to demonstrate the new lighting scheme to industry representatives. Representatives from the UK CAA, AAIB, Oil and Gas UK, Shell Aircraft, ICAO, HSE, CAA Norway and the system manufacturers (AGI and Orga) attended the demonstrations. A photograph of the system taken during the trial is presented in Figure 15 below.

Figure 15 Aerial photograph of the AGI prototype lighting system on the CPC-1

4.30 Fortunately, heavy rain and low cloud enabled the lighting to be observed in quite challenging visual cueing conditions. A proforma was completed by the crew of one of the helicopters and this is included in Table A3 in Appendix A (see proforma 4). The helicopter crews were very impressed with the lighting and the feedback from the observers during the subsequent debrief was generally positive.

4.31 The only issue of any real consequence was that some thought that the intensity of the Touchdown/Positioning Marking circle and the Heliport Identification Marking (‘H’) could usefully be increased. It was considered that this observation could have been due to the high level of cultural lighting on the CPC-1 (see Figure 15), and/or due to the high luminance of the LED perimeter lights. In any event, it was accepted that there was a need to allow for some degree of adjustment of the intensity of the circle and ‘H’ lighting.
Conclusions

4.32 The system was evaluated over a wide range of meteorological conditions (see paragraph 4.37), including some of the most challenging ever likely to be encountered offshore, and the results obtained show great promise. Nevertheless, more evaluations in limiting meteorological conditions would be desirable. Although evaluated by a reasonable number of pilots, a broader representation of the pilot community in the trials would also be desirable.

4.33 Overall the performance of the lighting was very good in almost all cases. There is some variability in the usable ranges reported, however, which is difficult to explain. It may be due to the subjective nature of the evaluation, the coarseness of the rating scale or differences in individual pilots’ perceptions. In addition, the approach profile flown in each case may have affected the results; no attempt was made to capture approach profile data, and this will be considered for any future trials.

4.34 The results from all of the CPC-1 trials are summarised in the following section.

Summary of Results from In-Service Trials of Prototype System

General

4.35 The results from the trial at the Thames A have been excluded from the summary presented here as the system was found to be non-compliant with the specification.

4.36 With reference to Appendix A, some of the proformas submitted by the flight crews were stated to represent more than one approach. In the results presented in this section therefore, the histograms include the results for both the number of proformas and the number of approaches.
Range of Operational Parameters Encountered

4.37 The operational data from the completed proformas is summarised in Figure 16. A reasonable range of met visibility was experienced, of which the lowest was 5 k. There was mostly no precipitation but five out of 30 approaches which occurred in rain were combined with low visibility. Most approaches conducted at night with similar numbers with/without moon. Overall the range of operational parameters encountered is considered reasonably representative.

Figure 16 Summary of Operational Parameters Encountered

Evaluation of the Touchdown/Positioning Marking Circle

4.38 The data for the evaluation of the Touchdown/Positioning Marking circle is summarised in Figures 17 to 19. The usable range of the circle generally met or exceeded the design goal of 0.5 NM, and was considered adequate in all but two cases. The intensity of the circle at short range was considered satisfactory in all but one case, and this corresponded to the one case where the range of the circle was judged to be less than the design aim of 0.5 NM.
Figure 17 Range of Touchdown/Positioning Marking Circle

![Chart showing the range of touchdown/positioning marking circle with categories of <0.25, 0.25, 0.5, 0.75, and >0.75 NM, with bars indicating the number of instances for proformas and approaches.]

Figure 18 Adequacy of Range of Touchdown/Positioning Marking Circle

![Chart showing the adequacy of range of landing circle with categories of Yes and No, with bars indicating the number of instances for proformas and approaches.]
Figure 19 Intensity of Touchdown/Positioning Marking Circle at Close Range

![Intensity of Touchdown/Positioning Marking Circle at Close Range](image)

Evaluation of the Heliport Identification Marking (‘H’)

4.39 The data for the evaluation of the Heliport Identification Marking (‘H’) is summarised in Figures 20 to 22.

Figure 20 Range of Heliport Identification Marking (‘H’)

![Range of Heliport Identification Marking (‘H’)](image)
The usable range of the ‘H’ mostly met or exceeded the design goal of 0.25 NM. Four out of five approaches where the range was estimated to be less than 0.25 NM occurred during twilight. Although the range was less than 0.25 NM in five approaches, it was only judged to be inadequate in one case. The intensity of the ‘H’ at short range was judged to be satisfactory.
Overall Evaluation of the New Helideck Lighting Scheme

4.41 The data for the overall evaluation of the new helideck lighting scheme is summarised in Figures 23 to 25. The visual cueing provided during the approach was mostly considered to be much better. For the landing, the visual cueing was judged to be either better or much better than floodlighting. There were no negative ratings for the system overall; most strongly agreed that the new helideck lighting system represents a significant improvement.

Figure 23 Rating of New Lighting Scheme During Approach

![Bar chart showing ratings of approach compared to current floodlighting.]

Figure 24 Rating of New Lighting Scheme During Landing

![Bar chart showing ratings of landing compared to current floodlighting.]

Proformas
Approaches

Rating of approach compared to current floodlighting

Rating of landing compared to current floodlighting
Figure 25 Overall Rating of New Lighting Scheme Compared to Floodlighting

New system is a significant improvement on floodlighting

- Strongly disagree
- Disagree
- No opinion
- Agree
- Strongly agree

Proformas
Approaches
SECTION 5
Final Validation of the Specification

Introduction

General

5.1 Clearly the duration of the in-service trials of the prototype system were much shorter than had been planned and would ideally be desired. Nevertheless, the system was evaluated in two representative offshore environments by a reasonable number of pilots operating two different helicopter types, and the vast majority of the feedback was very positive.

5.2 The main questions outstanding from the trials were considered to be:

- Is the performance of the system adequate when used in combination with high luminance perimeter lights and/or on offshore installations with high levels of cultural lighting?
- Can the system be made sufficiently robust to survive the environment for an acceptable period of time?

Performance in High Levels of Background Lighting

5.3 The level of background lighting affects the value of eye illumination threshold and therefore the intensity of the lighting system required to obtain the desired performance. In the absence of any quantitative data, it is entirely possible that the value of eye illumination threshold selected for producing the specification \(E_i = 10^{-6.1}\) is too low for more well lit platforms. In addition, the LED-based perimeter lights introduced on a number of platforms have a much smaller aperture than other forms of perimeter lighting. This increases their luminance making them appear brighter and, consequently, the circle and ‘H’ lighting appear dimmer.

5.4 Simply changing the specification to increase the intensity was not considered to be desirable as this could result in the system being too bright on installations with low levels of cultural lighting, e.g. NUIs. Instead, the existing specification was retained as the normal or standard system performance, and a requirement to provide adjustment of the circle and ‘H’ intensities up to double the present minimum values was added. (Note that doubling the minimum intensities does
not exceed the overall 60 cd glare limit adopted.) It was proposed that the intensity of the circle and ‘H’ would be adjusted during post installation commissioning trials on each individual platform and then ‘fixed’ to prevent further ‘non-authorised’ adjustment.

System Durability

5.5 The problems encountered with the trials systems were partly responsible for the reduced duration of the trials but, in fact, producing equipment that would survive the harsh operating environment of an offshore helideck was always recognised to be a significant challenge. Indeed, addressing this aspect of the scheme was as much a part of the trials as the evaluation of the performance of the system by helicopter flight crews.

5.6 While the problems encountered were not reasonably foreseeable, it was recognised that design solutions needed to be identified, implemented in a new version of the system and tested in-service prior to progressing any retrofit.

Production System

5.7 Following completion of the trials of the prototype system on the Centrica CPC-1 platform in 2009 the lighting equipment contractor, AGI Ltd, decided to partner with Orga bv in The Netherlands for the development and manufacture of a production version of the system.

5.8 Although AGI Ltd had significant experience in producing lighting equipment for use in the marine environment, they did not have any prior experience of the offshore oil and gas industry. Orga bv, however, are a major supplier to the sector but had not bid for the production of the prototype system.

5.9 The two companies established a commercial agreement to collaborate on the design and development of a production version of the circle and ‘H’ lighting system that would address all of the issues identified during the trials. In particular, the facility to adjust the intensity of the system was added, and the aspect of system durability was addressed.
In-Service Trials of Production System on Centrica CPC-1 Platform

General

5.10 The installation of a production version of the system on the CPC-1 was completed during the first half of October 2012. A photograph of the system installed on the CPC-1 is presented in Figure 26 below.

Figure 26 Orga bv production lighting system on the CPC-1

5.11 Unlike previous installations, the lighting equipment was attached to the helideck using steel mounting plates. The plates were bonded to the helideck and the lighting panels then bolted to the plates by means of threaded studs welded to the plates. This scheme was employed to facilitate replacement of lighting panels when necessary due to damage or failure.

In-Service Trial

5.12 The same trials proforma as used for the trial on the Thames A and the earlier trials on the CPC-1 (see Appendix A) was issued to Bond Offshore Helicopters at Blackpool, Bond having taken over the contract for operating to the platform from CHC since the earlier trials of the prototype system. The trial commenced towards the end of October 2012 following installation of the system, and a total of six proformas
were collected before the need for further feedback ceased. The results from the proformas are summarised in Table A4 in Appendix A.

5.13 All of the results are positive and most are very positive. The worst result, which is still good, was associated with an approach performed during twilight when the both the effectiveness of the lighting and the added benefit would be expected to be reduced. All evaluations were performed in good visibility and with no precipitation which would be expected to have a positive influence on the results. However, all pilots were regular visitors to the platform and, during the initial trial at the Thames A, regular visitors appeared to be more critical of the system.

5.14 The results for the Touchdown/Positioning Marking circle are very encouraging. A minimum usable range of 0.75 NM or greater was achieved in all evaluations, significantly exceeding the design objective of 0.5 NM. The intensity of the circle at close range was judged to be ‘about right’ in all cases, indicating that the above design performance in usable range did not result in excess intensity and glare at closer ranges.

5.15 The results for the Heliport Identification Marking (‘H’) are also very good. A minimum usable range of 0.5 NM or greater was achieved in all evaluations, significantly exceeding the design objective of 0.25 NM. As for the Touchdown/Positioning Marking circle, the intensity of the ‘H’ at close range was judged to be ‘about right’ in all cases, indicating the absence of glare at closer ranges.

5.16 As regards the overall ratings for the approach, the maximum rating was awarded in four cases and a high rating in the other two. For the landing, the maximum rating was awarded in three cases, and a high rating in the other three. In terms of comparing the lighting with helideck lighting meeting current standards, five pilots awarded the highest rating, one of whom ‘invented’ an even higher rating (proforma 3). The sixth pilot awarded a high rating which was associated with the approach conducted in twilight (proforma 4).

5.17 Only two comments were noted, both of which are regarded as positive (proformas 4 and 6).

CAA Evaluation Flight

5.18 A Eurocopter AS365 N3 helicopter was chartered from Bond Offshore Helicopters on 27 November 2012 to fly to the Centrica CPC-1 platform in order for CAA to evaluate the production version of the new lighting.
Several orbits and approaches were flown and the system was judged to perform exceptionally well. Photographs of the installation taken during the CAA evaluation flight are presented in Figures 27 and 28.

Figure 27 Comparison of circle and ‘H’ lighting scheme with floodlighting scheme

Figure 28 Aerial view of Orga bv production lighting system on the CPC-1
5.19 In Figure 27 the new lighting on the CPC-1 on the right can be directly compared with the traditional floodlighting installed on the DP1 helideck to the left. Figure 28 presents a close-up of the lighting, illustrating the very good contrast obtained with the platform cultural lighting.

5.20 An attempt was made to evaluate the effect of increasing the intensity of the lighting but no noticeable difference could be observed. It was subsequently discovered that the intensities of the circle and ‘H’ had already been set to approximately double the baseline settings leaving little scope for further increase. The scope for confusion in setting the intensities of circle and ‘H’, especially with the ability to adjust them independently was noted.

System Durability

5.21 During the ten-month period to end June 2013, the lighting system was exposed to around 3000 landings with no major issues. The system remained fully serviceable throughout the period with no failures or partial failures of any of the lighting panels.

5.22 Some improvements to the installation were identified, however, which would further reduce any damage or deterioration of the system in-service. In particular, it was determined that all metal fitments and fittings should be either stainless steel or aluminium for steel and aluminium decks respectively to minimise problems due to corrosion. Carbon steel plates had been used for the installation due to concerns regarding galvanic corrosion, but this is considered unlikely to present a problem due to the lack of metal to metal contact between the mounting plates and the helideck.

Conclusions

5.23 The performance of the production version of the lighting in enhancing the visual cueing provided to pilots met, and possibly exceeded, all expectations. All pilot feedback was positive, and most was very positive.
5.24 The greater than expected minimum usable ranges of the circle and ‘H’ may have been the result of the lighting being set to ‘bright’. However, given the level of cultural lighting on the platform and the high luminance LED perimeter lights, this is how the system would normally be expected to be set up. Similar performance at ‘standard’ setting on a less well lit platform and/or a helideck fitted with lower luminance perimeter lights would be expected. From a photometric point of view, therefore, the specification for the circle and ‘H’ lighting is considered to have been validated.

5.25 One minor change subsequently made to the specification was to limit the adjustment of the system intensity to two pre-programmed settings of ‘standard’ and ‘bright’. These are to be determined by the lighting manufacturer such that the luminance of the circle and ‘H’ remain in balance and comply with the specified intensities. This scheme is expected to provide sufficient adjustment to cater for all offshore helideck lighting environments while minimising scope for error.

5.26 In terms of durability, the lighting equipment itself performed well. All of the maintenance issues that arose were minor and related to the installation hardware rather than the lighting units themselves. Solutions to the problems encountered have been identified.

5.27 Overall, with the incorporation of the minor modifications identified, the production version of the system is considered to be of a satisfactory standard for general implementation.
SECTION 6
Implementation

Background

Related Accidents

6.1 There have been three notable accidents in which visual cueing at offshore platforms is believed to have been a significant factor. These accidents are:

- Aerospatiale SA365N, registration G-BLUN, near the North Morecambe gas platform, Morecambe Bay on 27 December 2006 [12].
- Eurocopter EC225 LP Super Puma, G-REDU near the ETAP platform on 18 February 2009 [13].

6.2 In all three cases:

- helicopters were conducting manually flown, visual approaches to offshore platforms at night;
- the prevailing meteorological conditions resulted in a degraded visual cueing environment;
- the pilot became disoriented and/or suffered a loss of situational awareness.

6.3 From other CAA-funded research into helicopter flight in degraded visual conditions [14] and various accident reviews (e.g. [15]), the ease with which pilots can become disoriented in such conditions is well established. In view of the significant improvement in visual cueing provided by the new helideck lighting scheme, it is considered reasonable to assume that its introduction would go a long way to preventing this type of accident. This view is supported by the UK Air Accidents Investigation Branch (AAIB) in [13].
Industry Views

6.4 On the basis of the research, development and trials reported in the preceding sections of this document, the CAA considers that the specification contained in Appendix B has been validated, and that at least one viable production system is commercially available. In view of the accident experience, in particular the accident at the ETAP platform in February 2009 [13] and resulting AAIB Safety Recommendation 2011-053, the CAA believes that retrofit of the new helideck lighting represents a significant and cost effective safety improvement measure.

6.5 The aviation industry, in the form of the offshore helicopter operators and the Helideck Certification Agency, concurs with the CAA’s views and fully supports the retrofit of the new lighting.

6.6 Through the Oil and Gas UK (OGUK) Helicopter Task Group² (HTG), the UK oil and gas industry also concurs with CAA’s views and has determined to retrofit the new lighting to all of its offshore helidecks.

Actions

Actions Taken

6.7 The new green perimeter lighting has already been adopted by ICAO in Annex 14, Vol. II and a slightly modified (improved) version of the specification has been incorporated in the CAA’s standards material [10]. This element of the lighting scheme became mandatory from 01 January 2009, and all UK offshore helidecks have been retrofitted. No further action is required in respect of the perimeter lighting.

6.8 ICAO Annex 14 Vol. II has been amended to allow the Touchdown/Positioning Marking circle and Heliport Identification Marking (‘H’) lighting scheme as an acceptable alternative to the existing floodlighting, i.e. it is allowed but is not mandatory under international minimum standards. The CAA has incorporated the specification detailed in Appendix B in its standards material [10] (see Appendix C).

6.9 The existing material on floodlighting in [10] has been consolidated into a single appendix (see Appendix G of [10]) in preparation for its eventual removal. It is anticipated that existing floodlighting may be retained as a back-up to the new lighting at least during the transition.

² The Helicopter Task Group (HTG) was established by Oil and Gas UK following the accident to G-REDL on 01 April 2009. The objective of the HTG was to try and provide better coordination and communication around helicopter safety issues for the UK oil and gas industry.
6.10 The OGUK Aviation Safety Technical Group (ASTG) has established a joint industry Helideck Lighting Workgroup to facilitate the retrofit of the new lighting. The objective of the Helideck Lighting Workgroup is to pool experience and expertise to address installation issues. The workgroup is acting as a focal point for feedback on the ongoing in-service experience being gained from the Centrica CPC-1 installation. The workgroup is also acting as a forum for the coordination of a second trial installation planned for the BP Miller platform. The purpose of this industry funded trial is to evaluate a second method for fixing the equipment to the helideck, and improvements to the installation scheme aimed primarily at reducing helideck down time.

6.11 As offshore helidecks in UK waters are unlicensed, the CAA is unable to directly mandate the retrofit of the new lighting. Responsibility for ensuring that offshore landing sites are of a suitable standard rests with the offshore helicopter operators. In recognition of the widespread industry consensus regarding the retrofit of the new lighting, however, CAA has written to the Accountable Managers at the offshore helicopter operators to place a time limit on night operations to helidecks not fitted with the new lighting. It has been proposed that all helidecks be retrofitted by 31 March 2018, with half being completed by 31 March 2016.

Further Actions Required

6.12 A key factor to the success of the retrofit programme is the physical installation of the lighting, both in terms of the speed and ease of the installation itself, the subsequent durability of the installation and minimisation of the impact of the lighting on on-deck operations. With the refinements already identified, the bonded mounting plate scheme utilised for the CPC-1 is considered to be viable for ‘traditional’ steel helidecks. An alternative scheme using Hilti studs has been proposed which would significantly reduce installation time and is considered to show promise. For aluminium helidecks, other techniques such as riveting may be more suitable and should be investigated. A portfolio of information on alternative mounting techniques and other useful information should be compiled and shared for the benefit of all interested parties in order to facilitate and expedite the roll-out of this important safety initiative.

6.13 Although reasonable and commensurate with other programmes, in view of the length of the retrofit it has been agreed that helidecks be prioritised. This will be primarily based on the need for enhanced visual
cueing (e.g. NUIs), but also practical considerations such as coordination with planned maintenance/down time. As regards the former factor, this is being addressed by the offshore helicopter operators and the Helideck Certification Agency. The latter factor is a matter for individual offshore installation owners/operators.

6.14 The circle and ‘H’ lighting has been designed to be compatible with helicopters having wheeled undercarriages, this being the prevailing configuration in UK waters during the development of the specification and at the time of publication. Although the specification detailed in Appendix B will ensure that the segments and subsections containing lighting elements are compliant with the ICAO maximum obstacle height of 2.5 cm, and likely to be able to withstand the point loading presented by the (typically) lighter skidded aircraft, further work to investigate compatibility of the new lighting with skid fitted helicopters is considered desirable. Skid fitted helicopters are being introduced into offshore operations in the UK in the offshore wind energy sector. Skid fitted helicopters are also extensively used at onshore elevated sites where the new lighting could also be usefully deployed.

Other Applications

6.15 There are a number of onshore elevated heliports in the UK where similar visual cueing conditions to offshore helidecks exist at night. In principle, therefore, it is to be expected that the benefits of the new lighting system would also be realised at these sites.

6.16 One difference, however, is that the Heliport Identification Marking (‘H’) at hospital heliports is coloured red rather than white (see Section 5.2.2.6 of [8]). Since the specification for the ‘H’ in terms of intensity is not particularly onerous and that red LEDs are readily available, it is not believed that there should be any insurmountable problems in producing a version of the system suitable for this application.

6.17 Another difference is the size of the ‘H’ marking. At 3.0 m x 2.0 m x 0.5 m, the red hospital heliport marking is somewhat smaller than the 4.0 m x 3.0 m x 0.75 m offshore helideck version. This could adversely affect the acquisition range which may need to be compensated for by an increase in intensity. This aspect should be evaluated by flight trials prior to in-service implementation.

6.18 Although it is believed that approach profiles to onshore elevated sites are similar to those to offshore helidecks, this aspect should be checked prior to extending the use of the system for such applications.
SECTION 7

References

SECTION 8

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAIB</td>
<td>Air Accidents Investigation Branch (UK)</td>
</tr>
<tr>
<td>ASTG</td>
<td>Aviation Safety Technical Group (OGUK)</td>
</tr>
<tr>
<td>CAA</td>
<td>Civil Aviation Authority (UK)</td>
</tr>
<tr>
<td>CAP</td>
<td>Civil Aviation Publication</td>
</tr>
<tr>
<td>cd</td>
<td>candela</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>ELP</td>
<td>Electro-Luminescent Panel</td>
</tr>
<tr>
<td>H</td>
<td>Heliport Identification Marking</td>
</tr>
<tr>
<td>HOMP</td>
<td>Helicopter Operations Monitoring Programme</td>
</tr>
<tr>
<td>HTG</td>
<td>Helicopter Task Group (OGUK)</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>IP66</td>
<td>Ingress Protection level (66 = solid ingress 6 = dust tight with vacuum applied to product; liquid ingress 6 = protected against powerful water jets)</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LOS</td>
<td>Limited Obstacle Sector</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>NAM</td>
<td>Nederlandse Aadolie Madtschappij (Dutch arm of Shell)</td>
</tr>
<tr>
<td>NM</td>
<td>nautical mile</td>
</tr>
<tr>
<td>NUI</td>
<td>Normally Unattended Installation</td>
</tr>
<tr>
<td>OFS</td>
<td>Obstacle Free Sector</td>
</tr>
<tr>
<td>OGUK</td>
<td>Oil & Gas UK</td>
</tr>
<tr>
<td>SARG</td>
<td>Safety and Airspace Regulation Group (of the UK CAA)</td>
</tr>
<tr>
<td>TD/PM</td>
<td>Touchdown / Positioning Marking (circle)</td>
</tr>
</tbody>
</table>
APPENDIX A
Trials Proformas

A1 The proforma issued for the Thames A trial is shown. The proforma used for the CPC-1 trials was identical except for the platform name.

CAA Thames A Helideck Lighting Report

Introduction:

Analysis of the responses and comments received under the offshore helicopter pilot questionnaire - based survey, conducted on behalf of CAA and reported in CAA Paper 97009, indicates that the visual cueing provided by current helideck lighting systems on offshore platforms is less than ideal. Floodlighting typically fails to illuminate the landing area in the middle of the deck and can present a source of glare. Even when correctly designed and set up, floodlighting does not provide any significant visual cueing until very late in the approach and landing.

Following flight trials at the NAM K14 platform, at Longside Airfield and at Norwich Airport, a specification for a new deck lighting system comprising a yellow lit landing circle and a green lit ‘H’ marking in lieu of floodlighting has been developed. A prototype system based on this specification has been produced and installed on the Thames A for in-service evaluation. Pilots are requested to provide feedback on the system via this questionnaire to allow the specification to be confirmed or modified as appropriate prior to incorporation as best practice in CAA’s guidance material (CAP 437).

As soon as it is safe to do so after completing the approach and landing on the platform, please answer the following questions by ticking the box which most accurately represents your opinion:

Evaluation of Yellow Landing Circle

1. At approximately what range from the platform did the yellow landing circle become useful as a visual cue?
 - ☐ >0.75NM ☐ 0.75NM ☐ 0.5NM ☐ 0.25NM ☐ <0.25NM
2. Was this early enough in the approach? ☐ YES ☐ NO
3. At close range, the intensity of the yellow landing circle was:
 - ☐ too low ☐ about right ☐ too high

NB: Please use the area on last page for any written comments you may wish to add.

Evaluation of Green ‘H’ Marking

4. At approximately what range from the platform did the green ‘H’ marking become useful as a visual cue?
 - ☐ >0.5NM ☐ 0.5NM ☐ 0.25NM ☐ 0.1NM ☐ <0.1NM
5. Was this early enough in the approach? ☐ YES ☐ NO
6. At close range, the intensity of the green ‘H’ marking was:
 - ☐ too low ☐ about right ☐ too high

NB: Please use the area on last page for any written comments you may wish to add.
Overall Assessment

7. Compared to the normal floodlighting system, in terms of providing visual cues during the approach, the new lighting system was:

- [] much better
- [] better
- [] about the same
- [] worse
- [] much worse

8. Compared to the normal floodlighting system, in terms of providing visual cues during the landing, the new lighting system was:

- [] much better
- [] better
- [] about the same
- [] worse
- [] much worse

9. The new lighting system represents a significant improvement over the existing floodlighting systems.

- [] strongly agree
- [] agree
- [] no opinion
- [] disagree
- [] strongly disagree

NB: Please use the area on last page for any written comments you may wish to add.

Operational Data

After flight, please record the following information relating to the approach and landing on the Thames A platform (please record information and tick boxes as appropriate):

- **Date:** ………………
- **Time (GMT):** ………………
- **Aircraft type:** ……………………………………………………
- **Visibility (km):** ………………
- **Precipitation:**
 - [] None
 - [] Rain
 - [] Snow
- **Ambient light:**
 - [] Twilight
 - [] Night (moon)
 - [] Night (no moon)
- **Pilot familiarity with the Platform:**
 - [] Regular visitor
 - [] Occasional visitor
 - [] First time visitor

Comments:

Please use this area to record any comments that you wish to make with regard to helideck lighting.

When completed, please return this questionnaire to:

CAA Safety Regulation Group, Aviation House, Gatwick Airport South, West Sussex, RH60YR, FAO David Howson, RASA, Wing 2W.

or fax 01293 573981, or scan and e-mail to dave.howson@caa.co.uk

THANK YOU FOR YOUR ASSISTANCE
Table A1 Proforma Results from Winter 2006/7 In-Service Trial on the Thames A Platform

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Visibility</th>
<th>Precipitation</th>
<th>Ambient Light</th>
<th>Pilot Familiarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 19.02.07</td>
<td>17.25</td>
<td>10 km+</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Occasional visitor</td>
</tr>
<tr>
<td>2 08.03.07</td>
<td>19.45</td>
<td>>10 k</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
</tr>
<tr>
<td>3 18.07.07</td>
<td>22.00</td>
<td>10 k</td>
<td>None</td>
<td>Twilight</td>
<td>Regular visitor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
</tr>
<tr>
<td>2</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
<td>About right</td>
<td>About the same</td>
<td>About the same</td>
<td>Disagree</td>
</tr>
<tr>
<td>3</td>
<td>0.25 NM</td>
<td>NO</td>
<td>Too low</td>
<td>0.25 NM</td>
<td>YES</td>
<td>Too low</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
</tr>
</tbody>
</table>
Table A2 Proforma Results from Winter 2008/9 In-Service Trial on the CPC-1 Platform

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Visibility</th>
<th>Precipitation</th>
<th>Ambient Light</th>
<th>Pilot Familiarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.02.09</td>
<td>17:56</td>
<td>40 k</td>
<td>None</td>
<td>Night (no moon)</td>
</tr>
<tr>
<td>2</td>
<td>14.02.09</td>
<td>07:10</td>
<td>10 k+</td>
<td>Rain</td>
<td>Twilight</td>
</tr>
<tr>
<td>3</td>
<td>15.02.09</td>
<td>17:55</td>
<td>9999</td>
<td>None</td>
<td>Twilight</td>
</tr>
<tr>
<td>4</td>
<td>16.02.09</td>
<td>07:28</td>
<td>>10 k</td>
<td>None</td>
<td>Daylight</td>
</tr>
<tr>
<td>5</td>
<td>16.02.09</td>
<td>18:00</td>
<td>30</td>
<td>None</td>
<td>Twilight</td>
</tr>
<tr>
<td>6</td>
<td>17.02.09</td>
<td>18:05</td>
<td>9999</td>
<td>None</td>
<td>Twilight</td>
</tr>
<tr>
<td>7</td>
<td>18.02.09</td>
<td>18:10</td>
<td>10</td>
<td>None</td>
<td>Night (no moon)</td>
</tr>
<tr>
<td>8</td>
<td>20.02.09</td>
<td>18:34</td>
<td>20</td>
<td>None</td>
<td>Night (no moon)</td>
</tr>
<tr>
<td>9</td>
<td>21.02.09</td>
<td>18:50</td>
<td>9999</td>
<td>None</td>
<td>Night (moon)</td>
</tr>
<tr>
<td>10</td>
<td>25.02.09</td>
<td>18:53</td>
<td>9999</td>
<td>None</td>
<td>Night (no moon)</td>
</tr>
<tr>
<td>11</td>
<td>05.06.09</td>
<td>02:14</td>
<td>40</td>
<td>?</td>
<td>Night (moon?)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.1 NM</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>0.25 NM</td>
<td>NO</td>
<td>Too low</td>
<td>0.1 NM</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.1 NM</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>0.5 NM</td>
<td>NO</td>
<td>About right</td>
<td>0.25 NM</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
</tr>
<tr>
<td>11</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
</tr>
</tbody>
</table>
Table A3 Proforma Results from Winter 2009/10 In-Service Trial on the CPC-1 Platform

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Visibility</th>
<th>Precipitation</th>
<th>Ambient Light</th>
<th>Pilot Familiarity</th>
<th>Captain</th>
<th>F/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.10.09</td>
<td>-</td>
<td>>10</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
<td>P1</td>
</tr>
<tr>
<td>2</td>
<td>28.10.09</td>
<td>18.30</td>
<td>10+</td>
<td>None</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P3</td>
</tr>
<tr>
<td>3</td>
<td>29.10.09</td>
<td>18.30</td>
<td>10+</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
<td>P3</td>
</tr>
<tr>
<td>4</td>
<td>02.11.09</td>
<td>20.30</td>
<td>5</td>
<td>Rain</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
<td>P4</td>
</tr>
<tr>
<td>5</td>
<td>04.11.09</td>
<td>17.25</td>
<td>7</td>
<td>None</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P5</td>
</tr>
<tr>
<td>6</td>
<td>05.11.09</td>
<td>17.30</td>
<td>7</td>
<td>Rain</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.1 NM</td>
<td>YES</td>
<td>About right</td>
<td>Better</td>
<td>Better</td>
<td>Agree</td>
</tr>
<tr>
<td>2</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
</tr>
<tr>
<td>3</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
</tr>
<tr>
<td>4</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.25 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree Demo flight for CAA. In conditions of heavy rain and low cloud the circle/H were of great benefit. This system should be mandated for all decks.</td>
</tr>
<tr>
<td>5</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree [6 approaches]</td>
</tr>
<tr>
<td>6</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree [5 approaches]</td>
</tr>
</tbody>
</table>
Table A4: Proforma Results from Winter 2012/13 In-Service Trial on the CPC-1 Platform

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Visibility</th>
<th>Precipitation</th>
<th>Ambient Light</th>
<th>Pilot Familiarity</th>
<th>Captain</th>
<th>F/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.10.12</td>
<td>17:58</td>
<td>9999</td>
<td>None</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P1</td>
</tr>
<tr>
<td>2</td>
<td>22.10.12</td>
<td>17:58</td>
<td>10+</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
<td>P1</td>
</tr>
<tr>
<td>3</td>
<td>24.10.12</td>
<td>-</td>
<td>10k</td>
<td>None</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P3</td>
</tr>
<tr>
<td>4</td>
<td>25.10.12</td>
<td>07:32</td>
<td>35km</td>
<td>None</td>
<td>Twilight</td>
<td>Regular visitor</td>
<td>P5</td>
</tr>
<tr>
<td>5</td>
<td>27.10.12</td>
<td>06:10</td>
<td>9999</td>
<td>None</td>
<td>Night (no moon)</td>
<td>Regular visitor</td>
<td>P7</td>
</tr>
<tr>
<td>6</td>
<td>04.11.12</td>
<td>17:55</td>
<td>20k+</td>
<td>None</td>
<td>Night (moon)</td>
<td>Regular visitor</td>
<td>P9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Better</td>
<td>Better</td>
<td>Strongly agree</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>V. Strongly agree</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Better</td>
<td>Better</td>
<td>Agree</td>
<td>Although we only flew after sunrise we both found an increased level of depth perception on the deck. The light level was good for twilight. May be different in total darkness.</td>
</tr>
<tr>
<td>5</td>
<td>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Much better</td>
<td>Strongly agree</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>>0.75 NM</td>
<td>YES</td>
<td>About right</td>
<td>0.5 NM</td>
<td>YES</td>
<td>About right</td>
<td>Much better</td>
<td>Better</td>
<td>Strongly agree</td>
<td>Best system to date.</td>
</tr>
</tbody>
</table>
APPENDIX B

Validated Helideck Lighting Scheme Specification

Specification for Helideck Lighting Scheme Comprising: Perimeter Lights, Lit Touchdown/Positioning Marking and Lit Heliport Identification Marking.

Overall Operational Requirement

B1 The whole lighting configuration should be visible over a range of 360° in azimuth. Although on some offshore installations the helideck may be obscured by topsides structure in some approach directions, the lighting configuration on the helideck need not take this into account.

B2 The visibility of the lighting configuration should be compatible with the normal range of helicopter vertical approach paths from a range of 2 nautical miles (NM).

Table B1 Visual Tasks During Approach and Landing

<table>
<thead>
<tr>
<th>Phase of Approach</th>
<th>Visual Task</th>
<th>Visual Cues/Aids</th>
<th>Desired Range (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5000 m met. vis.</td>
</tr>
<tr>
<td>Helideck Location and</td>
<td>Search within platform structure</td>
<td>Shape of helideck; colour of helideck; luminance of helideck perimeter lighting.</td>
<td>1.5 (2.8 km)</td>
</tr>
<tr>
<td>Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Approach</td>
<td>Detect helicopter position in three axes. Detect rate of change of position.</td>
<td>Apparent size / shape and change of size / shape of helideck. Orientation and change of orientation of known features/markings/ lights.</td>
<td>1.0 (1.8 km)</td>
</tr>
<tr>
<td>Hover and Landing</td>
<td>Detect helicopter attitude position and rate of change of position in three axes (six degrees of freedom).</td>
<td>Known features / markings / lights. Helideck texture.</td>
<td>0.03 (50 m)</td>
</tr>
</tbody>
</table>
B3 The purpose of the lighting configuration is to aid the helicopter pilot perform the necessary visual tasks during approach and landing as stated in Table B1.

B4 The minimum intensities of the lighting configuration should be adequate to ensure that, for a minimum Meteorological Visibility (Met. Vis.) of 1400 m and an illuminance threshold of \(10^{6.1}\) lux, each feature of the system is visible and usable at night from ranges in accordance with B5, B6 and B7 (below).

B5 The Perimeter Lights are to be visible at night from a minimum range of 0.75 NM.

B6 The Touchdown/Positioning Marking (TD/PM) circle on the helideck is to be visible at night from a minimum range of 0.5 NM.

B7 The Heliport Identification Marking ('H') is to be visible at night from a minimum range of 0.25 NM.

B8 The minimum ranges at which the TD/PM circle and ‘H’ are visible and usable (see paragraphs B6 and B7 above), should still be achieved even where a correctly fitted 200 mm helideck net covers the lighting.

B9 The design of the Perimeter Lights, TD/PM circle and ‘H’ should be such that the luminance of the Perimeter Lights is equal to or greater than that of the TD/PM circle segments, and the luminance of the TD/PM circle segments equal to or greater than that of the ‘H’.

B10 The design of the TD/PM circle and ‘H’ should include a facility to increase their intensity by up to two times the figures given in this specification to permit a once-off (tamper proof) adjustment at installation; the maximum figures should not be exceeded. The purpose of this facility is to ensure adequate performance at installations with high levels of background lighting without risking glare at less well-lit installations. The TD/PM circle and ‘H’ should be adjusted together using a single control to ensure that the balance of the overall lighting system is maintained in both the ‘standard’ and ‘bright’ settings.
Definitions
The following definitions should apply.

Lighting Element
B11 A lighting element is a light source within a segment or sub-section and may be individual (e.g. a Light Emitting Diode (LED)) or continuous (e.g. fibre optic cable, electro luminescent panel). An individual lighting element may consist of a single light source or multiple light sources arranged in a group or cluster.

Segment
B12 A segment is a section of the TD/PM circle lighting. For the purposes of this specification, the dimensions of a segment are the length and width of the smallest possible rectangular area that is defined by the outer edges of the lighting elements, including any lenses.

Sub-Section
B13 A sub-section is an individual section of the ‘H’ lighting. For the purposes of this specification, the dimensions of a sub-section are the length and width of the smallest possible rectangular area that is defined by the outer edges of the lighting elements, including any lenses.

The Perimeter Light Requirement

Configuration
B14 Perimeter lights, spaced at intervals of not more than 3 m, should be fitted around the perimeter of the landing area of the helideck.

Mechanical Constraints
B15 For any helideck where the D-value is greater than 16.00 m the perimeter lights, when installed, should not exceed a height of 25 cm above the surface of the helideck. Where a helideck has a D-value of 16.00 m or less the perimeter lights should not exceed a height of 5 cm above the surface of the helideck.
Light Intensity

B16 The minimum light intensity profile is given in Table B2 below:

Table B2 Minimum Light Intensity Profile for Perimeter Lights

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Azimuth</th>
<th>Intensity (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º to 10º</td>
<td>-180º to +180º</td>
<td>30 cd</td>
</tr>
<tr>
<td>>10º to 20º</td>
<td>-180º to +180º</td>
<td>15 cd</td>
</tr>
<tr>
<td>> 20º to 90º</td>
<td>-180º to +180º</td>
<td>3 cd</td>
</tr>
</tbody>
</table>

B17 No perimeter light should have an intensity of greater than 60 cd at any angle of elevation. Note that the design of the perimeter lights should be such that the luminance of the perimeter lights is equal to or greater than that of the TD/PM circle segments.

Colour

B18 The colour of the light emitted by the perimeter lights should be green, as defined in ICAO Annex 14 Volume 1 Appendix 1, paragraph 2.1.1(c), whose chromaticity lies within the following boundaries:

- Yellow boundary \(x = 0.360 - 0.080y \)
- White boundary \(x = 0.650y \)
- Blue boundary \(y = 0.390 - 0.171x \)

Serviceability

B19 The perimeter lighting is considered serviceable provided that at least 90% of the lights are serviceable, and providing that any unserviceable lights are not adjacent to each other.
The Touchdown / Positioning Marking Circle Requirement

Configuration
B20 The lit TD/PM circle should be superimposed on the yellow painted marking. It should comprise one or more concentric circles of at least 16 discrete lighting segments, of 40 mm minimum width. A single circle should be positioned at the mean radius of the painted circle. Multiple circles should be symmetrically disposed about the mean radius of the painted circle. The lighting segments should be of such a length as to provide coverage of between 50% and 75% of the circumference and be equidistantly placed with the gaps between them not less than 0.5 m. The mechanical housing should be coloured yellow - see CAP 437 Chapter 4 para. 2.11.

Mechanical Constraints
B21 The height of the segments and lighting elements of the TD/PM circle and any associated cabling should be as low as possible and should not exceed 25 mm. The overall height of the system, taking account of any mounting arrangements, should be kept to a minimum. So as not to present a trip hazard, the segments should not present any vertical outside edge greater than 6 mm without chamfering at an angle not exceeding 30° from the horizontal.

B22 The overall effect of the lighting segments and cabling on deck friction should be minimised. Wherever practical, the surfaces of the lighting segments should meet the minimum deck friction limit coefficient (μ) of 0.65, e.g. on non-illuminated surfaces.

B23 The TD/PM circle lighting components, fitments and cabling should be able to withstand a pressure of at least 1,655 kPa (240 lbs/in²) and ideally 2,280 kPa (331 lbs/in²) without damage.

Intensity
B24 The light intensity for each of the lighting segments, when viewed at angles of azimuth over the range + 80° to -80° from the normal to the longitudinal axis of the strip (see Figure B1), should be as defined in Table B3.
Table B3 Light Intensity for TD/PM Circle Lighting Segments

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Intensity</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° - 10°</td>
<td>As a function of segment length as defined in Figure B2.</td>
<td></td>
<td>60 cd</td>
</tr>
<tr>
<td>>10° - 20°</td>
<td>25% of min intensity >0° to 10°</td>
<td></td>
<td>45 cd</td>
</tr>
<tr>
<td>>20° - 90°</td>
<td>5% of min intensity >0° to 10°</td>
<td></td>
<td>15 cd</td>
</tr>
</tbody>
</table>

B25 For the remaining angles of azimuth on either side of the longitudinal axis of the segment, the maximum intensity should be as defined in Table B3.

B26 Note that the intensity of each lighting segment should be nominally symmetrical about its longitudinal axis.

B27 Note also that the design of the TD/PM circle should be such that the luminance of the TD/PM circle segments is equal to or greater than the subsections of the ‘H’.

Figure B1 TD/PM Segment Measurement Axis System
Figure B2 TD/PM Segment Intensity versus Segment Length

NOTE: Given the minimum gap size of 0.5 m and the minimum coverage of 50%, the minimum segment length is 0.5 m. The maximum segment length depends on deck size, but is given by selecting the minimum number of segments (16) and the maximum coverage (75%).

B28 If a segment is made up of a number of individual lighting elements (e.g. LED’s) then they should be of the same nominal performance (i.e. within manufacturing tolerances) and be equidistantly spaced throughout the segment to aid textural cueing. Minimum spacing should be 3 cm and maximum spacing 10 cm. The minimum intensity of each lighting element (i) should be given by the formula:

\[i = \frac{I}{n} \]

where: \(I \) = required minimum intensity of segment at the ‘look down’ (elevation) angle (see Table B3).

\(n \) = the number of lighting elements within the segment.

B29 If the segment comprises a continuous lighting element (e.g. fibre optic cable, electro luminescent panel), then to achieve textural cueing at short range, the element should be masked at 3.0 cm intervals on a 1:1 mark-space ratio.
Colour

B30 The colour of the light emitted by the TD/PM circle should be yellow, as defined in ICAO Annex 14 Volume 1 Appendix 1, paragraph 2.1.1(b), whose chromaticity is within the following boundaries:

- Red boundary \(y = 0.382 \)
- White boundary \(y = 0.790 - 0.667x \)
- Green boundary \(y = x - 0.120 \)

Serviceability

B31 The TD/PM circle is considered serviceable provided that at least 90% of the segments are serviceable. A TD/PM circle segment is considered serviceable provided that at least 90% of the lighting elements are serviceable.

The Heliport Identification Marking Requirement

Configuration

B32 The lit Heliport Identification Marking ('H') should be superimposed on the 4 m x 3 m white painted 'H' (limb width 0.75 m). The limbs should be lit in outline form as shown in Figure B3.

Figure B3 Configuration and Dimensions of Heliport Identification Marking ‘H’
B33 The outline lit ‘H’ should comprise sub-sections of between 80 mm and 100 mm wide around the outer edge of the painted ‘H’ (see Figure B3). There are no restrictions on the length of the sub-sections, but the gaps between them should not be greater than 10 cm. The mechanical housing should be coloured white - see CAP 437 Chapter 4, Paragraph 2.11.

Mechanical Constraints
B34 The height of the lit ‘H’ and any associated cabling should be as low as possible and should not exceed 25 mm. The overall height of the system, taking account of any mounting arrangements, should be kept to a minimum. So as not to present a trip hazard, the lighting strips should not present any vertical outside edge greater than 6 mm without chamfering at an angle not exceeding 30° from the horizontal.

B35 The overall effect of the lighting sub-sections and cabling on deck friction should be minimised. Wherever practical, the surfaces of the lighting sub-sections should meet the minimum deck friction limit coefficient (μ) of 0.65, e.g. on non-illuminated surfaces.

B36 The ‘H’ lighting components, fitments and cabling should be able to withstand a pressure of at least 1,655 kPa (240 lbs/in²) and ideally 2,280 kPa (331 lbs/in²) without damage.

Intensity
B37 The intensity of the lighting along the 4 m edge of the ‘H’ over all angles of azimuth is given in Table B4 below.

Table B4 Light Intensity for TD/PM Circle Lighting Segments

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>2° - 12°</td>
<td>3.5 cd</td>
</tr>
<tr>
<td>>12° - 20°</td>
<td>0.5 cd</td>
</tr>
<tr>
<td>>20° - 90°</td>
<td>0.2 cd</td>
</tr>
</tbody>
</table>

NOTE: For the purposes of demonstrating compliance with this specification, a sub-section of the lighting forming the 4 m edge of the ‘H’ may be used. The minimum length of the sub-section should be 0.5 m.
B38 The ‘H’ should consist of the same lighting element material throughout.

B39 If the ‘H’ is made up of individual lighting elements (e.g. LED’s) then they should be of nominally identical performance (i.e. within manufacturing tolerances) and be equidistantly spaced within the limb to aid textural cueing. Minimum spacing should be 3 cm and maximum spacing 10 cm. The intensity of each lighting element (i) should be given by the formula:

\[i = \frac{I}{n} \]

where:

I = intensity of the segment between 2° and 12°.

n = the number of lighting elements within the segment.

B40 If the ‘H’ is constructed from a continuous light element (e.g. ELP panels or fibre optic cables or panels), the luminance (B) of the 4 m edge of the outline ‘H’ should be given by the formula:

\[B = \frac{I}{A} \]

where:

I = intensity of the limb (see Table B4).

A = the projected lit area at the ‘look down’ (elevation) angle.

Colour

B41 The colour of the ‘H’ should be green, as defined in ICAO Annex 14 Volume 1 Appendix 1, paragraph 2.1.1(c), whose chromaticity is within the following boundaries:

Yellow boundary \(x = 0.360 - 0.080y \)

White boundary \(x = 0.650y \)

Blue boundary \(y = 0.390 - 0.171x \)

Serviceability

B42 The ‘H’ is considered serviceable provided that at least 90% of the subsections are serviceable. An ‘H’ subsection is considered serviceable provided that at least 90% of the lighting elements are serviceable.
Other Considerations

B43 All lighting components and fitments should meet safety regulations relevant to a helideck environment such as explosion proofing (Zone 1 or 2 as appropriate) and flammability (by a notified body in accordance with the ATEX directive).

B44 All lighting components and fitments installed on the surface of the helideck should be resistant to attack by fluids such as fuel, hydraulic fluid, and those used for deicing, cleaning and fire-fighting. In addition they should be resistant to UV light, rain, sea spray, guano, snow and ice. Installation arrangements for the lighting components and fitments should be acceptable to the CAA.

B45 All lighting components and fitments that are mounted on the surface of the helideck should be able to operate within a temperature range appropriate for the local ambient conditions.

B46 All lighting components and fitments should, as a minimum, meet IEC International Protection (IP) standard IP66, i.e. dust tight and resistant to powerful water jetting.

B47 All cabling should utilise low smoke/toxicity, flame retardant cable. Any through-the-deck cable routing and connections should use sealed glands, type approved for helideck use.

B48 All lighting components should be tested by an independent test house. The optical department of this test house should be accredited according to ISO/IEC 17025.

B49 Provision should be included in the design of the system to allow for the drainage of the helideck, in particular, the area inside the Touchdown / Positioning Marking Circle.